bp神经网络pythonpytorch神经网络的是什么意思mobcadaa的技术博客

人工神经网络有很多模型,但是日前应用最广、基本思想最直观、最容易被理解的是多层前馈神经网络及误差逆传播学习算法(Error Back-Prooaeation),简称为BP网络。

在1986年以Rumelhart和McCelland为首的科学家出版的《Parallel Distributed Processing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络(图4.1),即:输入层、隐含层(也称中间层)、输出层,具体如下:

图4.1 三层BP网络结构

(1)输入层

输入层是网络与外部交互的接口。一般输入层只是输入矢量的存储层,它并不对输入矢量作任何加工和处理。输入层的神经元数目可以根据需要求解的问题和数据表示的方式来确定。一般而言,如果输入矢量为图像,则输入层的神经元数目可以为图像的像素数,也可以是经过处理后的图像特征数。

(2)隐含层

1989年,Robert Hecht Nielsno证明了对于任何在闭区间内的一个连续函数都可以用一个隐层的BP网络来逼近,因而一个三层的BP网络可以完成任意的n维到m维的映射。增加隐含层数虽然可以更进一步的降低误差、提高精度,但是也使网络复杂化,从而增加了网络权值的训练时间。误差精度的提高也可以通过增加隐含层中的神经元数目来实现,其训练效果也比增加隐含层数更容易观察和调整,所以一般情况应优先考虑增加隐含层的神经元个数,再根据具体情况选择合适的隐含层数。

(3)输出层

输出层输出网络训练的结果矢量,输出矢量的维数应根据具体的应用要求来设计,在设计时,应尽可能减少系统的规模,使系统的复杂性减少。如果网络用作识别器,则识别的类别神经元接近1,而其它神经元输出接近0。

以上三层网络的相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接,连接强度构成网络的权值矩阵W。

BP网络是以一种有教师示教的方式进行学习的。首先由教师对每一种输入模式设定一个期望输出值。然后对网络输入实际的学习记忆模式,并由输入层经中间层向输出层传播(称为“模式顺传播”)。实际输出与期望输出的差即是误差。按照误差平方最小这一规则,由输出层往中间层逐层修正连接权值,此过程称为“误差逆传播”(陈正昌,2005)。所以误差逆传播神经网络也简称BP(Back Propagation)网。随着“模式顺传播”和“误差逆传播”过程的交替反复进行。网络的实际输出逐渐向各自所对应的期望输出逼近,网络对输入模式的响应的正确率也不断上升。通过此学习过程,确定下各层间的连接权值后。典型三层BP神经网络学习及程序运行过程如下(标志渊,2006):

(1)首先,对各符号的形式及意义进行说明:

网络输入向量Pk=(a1,a2,...,an);

网络目标向量Tk=(y1,y2,...,yn);

中间层单元输入向量Sk=(s1,s2,...,sp),输出向量Bk=(b1,b2,...,bp);

输出层单元输入向量Lk=(l1,l2,...,lq),输出向量Ck=(c1,c2,...,cq);

输入层至中间层的连接权wij,i=1,2,...,n,j=1,2,...p;

中间层至输出层的连接权vjt,j=1,2,...,p,t=1,2,...,p;

中间层各单元的输出阈值θj,j=1,2,...,p;

输出层各单元的输出阈值γj,j=1,2,...,p;

参数k=1,2,...,m。

(2)初始化。给每个连接权值wij、vjt、阈值θj与γj赋予区间(-1,1)内的随机值。

(3)随机选取一组输入和目标样本

提供给网络。

(4)用输入样本

、连接权wij和阈值θj计算中间层各单元的输入sj,然后用sj通过传递函数计算中间层各单元的输出bj。

基坑降水工程的环境效应与评价方法

bj=f(sj) j=1,2,...,p (4.5)

(5)利用中间层的输出bj、连接权vjt和阈值γt计算输出层各单元的输出Lt,然后通过传递函数计算输出层各单元的响应Ct。

基坑降水工程的环境效应与评价方法

Ct=f(Lt) t=1,2,...,q (4.7)

(6)利用网络目标向量

,网络的实际输出Ct,计算输出层的各单元一般化误差

基坑降水工程的环境效应与评价方法

(7)利用连接权vjt、输出层的一般化误差dt和中间层的输出bj计算中间层各单元的一般化误差

基坑降水工程的环境效应与评价方法

(8)利用输出层各单元的一般化误差

与中间层各单元的输出bj来修正连接权vjt和阈值γt。

基坑降水工程的环境效应与评价方法

(9)利用中间层各单元的一般化误差

,输入层各单元的输入Pk=(a1,a2,...,an)来修正连接权wij和阈值θj。

基坑降水工程的环境效应与评价方法

(10)随机选取下一个学习样本向量提供给网络,返回到步骤(3),直到m个训练样本训练完毕。

(11)重新从m个学习样本中随机选取一组输入和目标样本,返回步骤(3),直到网路全局误差E小于预先设定的一个极小值,即网络收敛。如果学习次数大于预先设定的值,网络就无法收敛。

(12)学习结束。

可以看出,在以上学习步骤中,(8)、(9)步为网络误差的“逆传播过程”,(10)、(11)步则用于完成训练和收敛过程。

通常,经过训练的网络还应该进行性能测试。测试的方法就是选择测试样本向量,将其提供给网络,检验网络对其分类的正确性。测试样本向量中应该包含今后网络应用过程中可能遇到的主要典型模式(宋大奇,2006)。这些样本可以直接测取得到,也可以通过仿真得到,在样本数据较少或者较难得到时,也可以通过对学习样本加上适当的噪声或按照一定规则插值得到。为了更好地验证网络的泛化能力,一个良好的测试样本集中不应该包含和学习样本完全相同的模式(董军,2007)。

谷歌人工智能写作项目:小发猫

一、BP模型概述

Pall Werbas博士于1974年在他的博士论文中提出了误差逆传播学习算法。完整提出并被广泛接受误差逆传播学习算法的是以Rumelhart和McCelland为首的科学家小组。他们在1986年出版“Parallel Distributed Processing,Explorations in the Microstructure of Cognition”(《并行分布信息处理》)一书中,对误差逆传播学习算法进行了详尽的分析与介绍,并对这一算法的潜在能力进行了深入探讨。

BP网络是一种具有3层或3层以上的阶层型神经网络。上、下层之间各神经元实现全连接,即下层的每一个神经元与上层的每一个神经元都实现权连接,而每一层各神经元之间无连接。网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,神经元的激活值从输入层经各隐含层向输出层传播,在输出层的各神经元获得网络的输入响应。在这之后,按减小期望输出与实际输出的误差的方向,从输入层经各隐含层逐层修正各连接权,最后回到输入层,故得名“误差逆传播学习算法”。随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断提高。

BP网络主要应用于以下几个方面:

1)函数逼近:用输入模式与相应的期望输出模式学习一个网络逼近一个函数;

2)模式识别:用一个特定的期望输出模式将它与输入模式联系起来;

3)分类:把输入模式以所定义的合适方式进行分类;

4)数据压缩:减少输出矢量的维数以便于传输或存储。

在人工神经网络的实际应用中,80%~90%的人工神经网络模型采用BP网络或它的变化形式,它也是前向网络的核心部分,体现了人工神经网络最精华的部分。

二、BP模型原理

下面以三层BP网络为例,说明学习和应用的原理。

1.数据定义

P对学习模式(xp,dp),p=1,2,…,P;

输入模式矩阵X[N][P]=(x1,x2,…,xP);

目标模式矩阵d[M][P]=(d1,d2,…,dP)。

三层BP网络结构

输入层神经元节点数S0=N,i=1,2,…,S0;

隐含层神经元节点数S1,j=1,2,…,S1;

神经元激活函数f1[S1];

权值矩阵W1[S1][S0];

偏差向量b1[S1]。

输出层神经元节点数S2=M,k=1,2,…,S2;

神经元激活函数f2[S2];

权值矩阵W2[S2][S1];

偏差向量b2[S2]。

学习参数

目标误差ϵ;

初始权更新值Δ0;

最大权更新值Δmax;

权更新值增大倍数η+;

权更新值减小倍数η-。

2.误差函数定义

对第p个输入模式的误差的计算公式为

中国矿产资源评价新技术与评价新模型

y2kp为BP网的计算输出。

BP网络学习公式推导的指导思想是,对网络的权值W、偏差b修正,使误差函数沿负梯度方向下降,直到网络输出误差精度达到目标精度要求,学习结束。

各层输出计算公式

输入层

y0i=xi,i=1,2,…,S0;

隐含层

中国矿产资源评价新技术与评价新模型

y1j=f1(z1j),

j=1,2,…,S1;

输出层

中国矿产资源评价新技术与评价新模型

y2k=f2(z2k),

k=1,2,…,S2。

输出节点的误差公式

中国矿产资源评价新技术与评价新模型

对输出层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2m的函数,但只有一个y2k与wkj有关,各y2m间相互独立。

其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设输出层节点误差为

δ2k=(dk-y2k)·f2′(z2k),

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

对隐含层节点的梯度公式推导

中国矿产资源评价新技术与评价新模型

E是多个y2k的函数,针对某一个w1ji,对应一个y1j,它与所有的y2k有关。因此,上式只存在对k的求和,其中

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

设隐含层节点误差为

中国矿产资源评价新技术与评价新模型

中国矿产资源评价新技术与评价新模型

同理可得

中国矿产资源评价新技术与评价新模型

4.采用弹性BP算法(RPROP)计算权值W、偏差b的修正值ΔW,Δb

1993年德国 Martin Riedmiller和Heinrich Braun 在他们的论文“A Direct Adaptive Method for Faster Backpropagation Learning:The RPROP Algorithm”中,提出Resilient Backpropagation算法——弹性BP算法(RPROP)。这种方法试图消除梯度的大小对权步的有害影响,因此,只有梯度的符号被认为表示权更新的方向。

权改变的大小仅仅由权专门的“更新值”

确定

中国矿产资源评价新技术与评价新模型

其中

表示在模式集的所有模式(批学习)上求和的梯度信息,(t)表示t时刻或第t次学习。

权更新遵循规则:如果导数是正(增加误差),这个权由它的更新值减少。如果导数是负,更新值增加。

中国矿产资源评价新技术与评价新模型

RPROP算法是根据局部梯度信息实现权步的直接修改。对于每个权,我们引入它的

各自的更新值

于在误差函数E上的局部梯度信息,按照以下的学习规则更新

中国矿产资源评价新技术与评价新模型

其中0<η-<1<η+。

在每个时刻,如果目标函数的梯度改变它的符号,它表示最后的更新太大,更新值

应由权更新值减小倍数因子η-得到减少;如果目标函数的梯度保持它的符号,更新值应由权更新值增大倍数因子η+得到增大。

为了减少自由地可调参数的数目,增大倍数因子η+和减小倍数因子η–被设置到固定值

η+=1.2,

η-=0.5,

这两个值在大量的实践中得到了很好的效果。

RPROP算法采用了两个参数:初始权更新值Δ0和最大权更新值Δmax

当学习开始时,所有的更新值被设置为初始值Δ0,因为它直接确定了前面权步的大小,它应该按照权自身的初值进行选择,例如,Δ0=0.1(默认设置)。

为了使权不至于变得太大,设置最大权更新值限制Δmax,默认上界设置为

Δmax=50.0。

在很多实验中,发现通过设置最大权更新值Δmax到相当小的值,例如

Δmax=1.0。

我们可能达到误差减小的平滑性能。

5.计算修正权值W、偏差b

第t次学习,权值W、偏差b的的修正公式

W(t)=W(t-1)+ΔW(t),

b(t)=b(t-1)+Δb(t),

其中,t为学习次数。

中国矿产资源评价新技术与评价新模型

每次学习平均误差

中国矿产资源评价新技术与评价新模型

当平均误差MSE<ε,BP网络学习成功结束。

在应用BP网络时,提供网络输入给输入层,应用给定的BP网络及BP网络学习得到的权值W、偏差b,网络输入经过从输入层经各隐含层向输出层的“顺传播”过程,计算出BP网的预测输出。

8.神经元激活函数f

线性函数

f(x)=x,

f′(x)=1,

f(x)的输入范围(-∞,+∞),输出范围(-∞,+∞)。

一般用于输出层,可使网络输出任何值。

S型函数S(x)

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(0,1)。

f′(x)=f(x)[1-f(x)],

f′(x)的输入范围(-∞,+∞),输出范围(0,

]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(0,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

在用于模式识别时,可用于输出层,产生逼近于0或1的二值输出。

双曲正切S型函数

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围(-1,1)。

f′(x)=1-f(x)·f(x),

f′(x)的输入范围(-∞,+∞),输出范围(0,1]。

一般用于隐含层,可使范围(-∞,+∞)的输入,变成(-1,1)的网络输出,对较大的输入,放大系数较小;而对较小的输入,放大系数较大,所以可用来处理和逼近非线性的输入/输出关系。

阶梯函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{0,1}。

f′(x)=0。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围{-1,1}。

f′(x)=0。

斜坡函数

类型1

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[0,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

类型2

中国矿产资源评价新技术与评价新模型

f(x)的输入范围(-∞,+∞),输出范围[-1,1]。

中国矿产资源评价新技术与评价新模型

f′(x)的输入范围(-∞,+∞),输出范围{0,1}。

三、总体算法

1.三层BP网络(含输入层,隐含层,输出层)权值W、偏差b初始化总体算法

(1)输入参数X[N][P],S0,S1,f1[S1],S2,f2[S2];

(2)计算输入模式X[N][P]各个变量的最大值,最小值矩阵 Xmax[N],Xmin[N];

(3)隐含层的权值W1,偏差b1初始化。

情形1:隐含层激活函数f( )都是双曲正切S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9))输出W1[S1][S0],b1[S1]。

情形2:隐含层激活函数f( )都是S型函数

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

情形3:隐含层激活函数f( )为其他函数的情形

1)计算输入模式X[N][P]的每个变量的范围向量Xrng[N];

2)计算输入模式X的每个变量的范围均值向量Xmid[N];

3)计算W,b的幅度因子Wmag;

4)产生[-1,1]之间均匀分布的S0×1维随机数矩阵Rand[S1];

5)产生均值为0,方差为1的正态分布的S1×S0维随机数矩阵Randnr[S1][S0],随机数范围大致在[-1,1];

6)计算W[S1][S0],b[S1];

7)计算隐含层的初始化权值W1[S1][S0];

8)计算隐含层的初始化偏差b1[S1];

9)输出W1[S1][S0],b1[S1]。

(4)输出层的权值W2,偏差b2初始化

1)产生[-1,1]之间均匀分布的S2×S1维随机数矩阵W2[S2][S1];

2)产生[-1,1]之间均匀分布的S2×1维随机数矩阵b2[S2];

3)输出W2[S2][S1],b2[S2]。

2.应用弹性BP算法(RPROP)学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b总体算法

函数:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)

(1)输入参数

P对模式(xp,dp),p=1,2,…,P;

三层BP网络结构;

学习参数。

(2)学习初始化

1)

2)各层W,b的梯度值

初始化为零矩阵。

(3)由输入模式X求第一次学习各层输出y0,y1,y2及第一次学习平均误差MSE

(4)进入学习循环

epoch=1

(5)判断每次学习误差是否达到目标误差要求

如果MSE<ϵ,

则,跳出epoch循环,

转到(12)。

(6)保存第epoch-1次学习产生的各层W,b的梯度值

(7)求第epoch次学习各层W,b的梯度值

1)求各层误差反向传播值δ;

2)求第p次各层W,b的梯度值

3)求p=1,2,…,P次模式产生的W,b的梯度值

的累加。

(8)如果epoch=1,则将第epoch-1次学习的各层W,b的梯度值

设为第epoch次学习产生的各层W,b的梯度值

(9)求各层W,b的更新

1)求权更新值Δij更新;

2)求W,b的权更新值

3)求第epoch次学习修正后的各层W,b。

(10)用修正后各层W、b,由X求第epoch次学习各层输出y0,y1,y2及第epoch次学习误差MSE

(11)epoch=epoch+1,

如果epoch≤MAX_EPOCH,转到(5);

否则,转到(12)。

(12)输出处理

1)如果MSE<ε,

则学习达到目标误差要求,输出W1,b1,W2,b2。

2)如果MSE≥ε,

则学习没有达到目标误差要求,再次学习。

(13)结束

3.三层BP网络(含输入层,隐含层,输出层)预测总体算法

首先应用Train3lBP_RPROP( )学习三层BP网络(含输入层,隐含层,输出层)权值W、偏差b,然后应用三层BP网络(含输入层,隐含层,输出层)预测。

函数:Simu3lBP( )。

1)输入参数:

P个需预测的输入数据向量xp,p=1,2,…,P;

三层BP网络结构;

学习得到的各层权值W、偏差b。

2)计算P个需预测的输入数据向量xp(p=1,2,…,P)的网络输出 y2[S2][P],输出预测结果y2[S2][P]。

四、总体算法流程图

BP网络总体算法流程图见附图2。

五、数据流图

BP网数据流图见附图1。

六、实例

实例一 全国铜矿化探异常数据BP 模型分类

1.全国铜矿化探异常数据准备

在全国铜矿化探数据上用稳健统计学方法选取铜异常下限值33.1,生成全国铜矿化探异常数据。

2.模型数据准备

根据全国铜矿化探异常数据,选取7类33个矿点的化探数据作为模型数据。这7类分别是岩浆岩型铜矿、斑岩型铜矿、矽卡岩型、海相火山型铜矿、陆相火山型铜矿、受变质型铜矿、海相沉积型铜矿,另添加了一类没有铜异常的模型(表8-1)。

3.测试数据准备

全国化探数据作为测试数据集。

隐层数2,输入层到输出层向量维数分别为14,9、5、1。学习率设置为0.9,系统误差1e-5。没有动量项。

表8-1 模型数据表

续表

5.计算结果图

如图8-2、图8-3。

图8-2

图8-3 全国铜矿矿床类型BP模型分类示意图

实例二 全国金矿矿石量品位数据BP 模型分类

1.模型数据准备

根据全国金矿储量品位数据,选取4类34个矿床数据作为模型数据,这4类分别是绿岩型金矿、与中酸性浸入岩有关的热液型金矿、微细浸染型型金矿、火山热液型金矿(表8-2)。

2.测试数据准备

模型样本点和部分金矿点金属量、矿石量、品位数据作为测试数据集。

输入层为三维,隐层1层,隐层为三维,输出层为四维,学习率设置为0.8,系统误差1e-4,迭代次数5000。

表8-2 模型数据

4.计算结果

结果见表8-3、8-4。

表8-3 训练学习结果

表8-4 预测结果(部分)

续表

我们最常用的神经网络就是BP网络,也叫多层前馈网络。BP是back propagation的所写,是反向传播的意思。我以前比较糊涂,因为一直不理解为啥一会叫前馈网络,一会叫BP(反向传播)网络,不是矛盾吗?其实是这样的,前馈是从网络结构上来说的,是前一层神经元单向馈入后一层神经元,而后面的神经元没有反馈到之前的神经元;而BP网络是从网络的训练方法上来说的,是指该网络的训练算法是反向传播算法,即神经元的链接权重的训练是从最后一层(输出层)开始,然后反向依次更新前一层的链接权重。因此二者并不矛盾,只是我没有理解其精髓而已。 随便提一下BP网络的强大威力: 1)任何的布尔函数都可以由两层单元的网络准确表示,但是所需的隐藏层神经元的数量随网络输入数量呈指数级增长; 2)任意连续函数都可由一个两层的网络以任意精度逼近。这里的两层网络是指隐藏层使用sigmoid单元、输出层使用非阈值的线性单元; 3)任意函数都可由一个三层的网络以任意精度逼近。其两层隐藏层使用sigmoid单元、输出层使用非阈值的线性单元。

我们最常用的神经网络就是BP网络,也叫多层前馈网络。BP是back propagation的所写,是反向传播的意思。我以前比较糊涂,因为一直不理解为啥一会叫前馈网络,一会叫BP(反向传播)网络,不是矛盾吗?其实是这样的,前馈是从网络结构上来说的,是前一层神经元单向馈入后一层神经元,而后面的神经元没有反馈到之前的神经元;而BP网络是从网络的训练方法上来说的,是指该网络的训练算法是反向传播算法,即神经元的链接权重的训练是从最后一层(输出层)开始,然后反向依次更新前一层的链接权重。因此二者并不矛盾,只是我没有理解其精髓而已。 随便提一下BP网络的强大威力: 1)任何的布尔函数都可以由两层单元的网络准确表示,但是所需的隐藏层神经元的数量随网络输入数量呈指数级增长; 2)任意连续函数都可由一个两层的网络以任意精度逼近。这里的两层网络是指隐藏层使用sigmoid单元、输出层使用非阈值的线性单元; 3)任意函数都可由一个三层的网络以任意精度逼近。其两层隐藏层使用sigmoid单元、输出层使用非阈值的线性单元。

人工神经网络(artificialneuralnetwork,ANN)指由大量与自然神经系统相类似的神经元联结而成的网络,是用工程技术手段模拟生物网络结构特征和功能特征的一类人工系统。神经网络不但具有处理数值数据的一般计算能力,而且还具有处理知识的思维、学习、记忆能力,它采用类似于“黑箱”的方法,通过学习和记忆,找出输入、输出变量之间的非线性关系(映射),在执行问题和求解时,将所获取的数据输入到已经训练好的网络,依据网络学到的知识进行网络推理,得出合理的答案与结果。

岩土工程中的许多问题是非线性问题,变量之间的关系十分复杂,很难用确切的数学、力学模型来描述。工程现场实测数据的代表性与测点的位置、范围和手段有关,有时很难满足传统统计方法所要求的统计条件和规律,加之岩土工程信息的复杂性和不确定性,因而运用神经网络方法实现岩土工程问题的求解是合适的。

BP神经网络模型是误差反向传播(BackPagation)网络模型的简称。它由输入层、隐含层和输出层组成。网络的学习过程就是对网络各层节点间连接权逐步修改的过程,这一过程由两部分组成:正向传播和反向传播。正向传播是输入模式从输入层经隐含层处理传向输出层;反向传播是均方误差信息从输出层向输入层传播,将误差信号沿原来的连接通路返回,通过修改各层神经元的权值,使得误差信号最小。

BP神经网络模型在建立及应用过程中,主要存在的不足和建议有以下四个方面:

(1)对于神经网络,数据愈多,网络的训练效果愈佳,也更能反映实际。但在实际操作中,由于条件的限制很难选取大量的样本值进行训练,样本数量偏少。

(3)以定量数据为基础建立模型,若能收集到充分资料,以定性指标(如基坑降水方式、基坑支护模式、施工工况等)和一些易获取的定量指标作为输入层,以评价等级作为输出层,这样建立的BP网络模型将更准确全面。

(4)BP人工神经网络系统具有非线性、智能的特点。较好地考虑了定性描述和定量计算、精确逻辑分析和非确定性推理等方面,但由于样本不同,影响要素的权重不同,以及在根据先验知识和前人的经验总结对定性参数进行量化处理,必然会影响评价的客观性和准确性。因此,在实际评价中只有根据不同的基坑施工工况、不同的周边环境条件,应不同用户的需求,选择不同的分析指标,才能满足复杂工况条件下地质环境评价的要求,取得较好的应用效果。

BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。经反复学习,最终使误差减小到可接受的范围。具体步骤如下: 1、从训练集中取出某一样本,把信息输入网络中。 2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。 3、计算网络实际输出与期望输出的误差。 4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。 5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。

最简单的BP神经网络?可能指单输入单输出的单隐层感知器模型。 BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。

????欢迎来到本博客❤️❤️???博主优势:???博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。 ⛳️赠与读者??做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要

图神经网络(Graph Neural Networks,GNN)是一类专门处理图结构数据的深度学习模型。与传统的深度学习模型不同,GNN能够直接处理节点和边之间的关系,捕捉图的结构信息。其核心思想是通过消息传递机制,使节点能够聚合其邻居节点的信息,从而更新自身的表示。GNN的基本原理:节点表示更新: 每个节点通过聚合其邻居节点的特征来更新自身的表示。这种聚合通常是加权求和,权重可以是固定的,也可以

图神经网络(Graph Neural Networks, GNNs)是一种专门用于处理图结构数据的深度学习模型。GNNs 通过学习节点的表示,能够捕捉图中的复杂依赖关系,因此在处理社交网络分析、推荐系统、知识图谱等多种应用中表现出色。下面是一个简单的图神经网络实现,我们将使用 Python 和 PyTorch 库。在这个例子中,我们将构建一个基本的图卷积网络(Graph Convolutiona

1. BP网络基本数学原理BP网络是一种多层前馈神经网络,它的名字源于在网络训练中,调整网络权值的训练算法是反向传播算法(即BP学习算法). BP网络是一种具有三层或者三层以上神经元的神经网络,包括输入层,隐含层和输出层,上下层之间实现全连接,而同一层的神经元之间无连接,输入层神经元和隐含层神经元之间的是网络的权值,即两个神经元之间的连接强度.隐含层或输出层任一神经元将前一层所有神经元传来的信息

前言bp神经网络是模拟人体中神经元结构而设计出来的:  神经元大致可以分为树突、突触、细胞体和轴突。树突为神经元的输入通道,其功能是将其它神经元的动作电位传递至细胞体。其它神经元的动作电位借由位于树突分支上的多个突触传递至树突上。神经细胞可以视为有两种状态的机器,激活时为“是”,不激活时为“否”。神经细胞的状态取决于从其他神经细胞接收到的信号量,以及突触的性质(抑制或加强)。当信号量超过某个阈值时

文章目录一、卷积神经网络简介(一)什么是卷积神经网络(二)卷积神经网络的结构(三)为何要用卷积神经网络二、PyTorch框架简介(一)环境搭建(二)一些基本概念和应用三、应用示例(一)项目目标(二)准备样本(三)构造卷积神经网络(四)训练并保存网络(五)加载并使用网络 PyTorch框架使得构造和训练神经网络方便了许多,为简述其用法,同时也为说明卷积神经网络的原理,本文举例说明如何基于PyTo

一、什么是 BP 神经网络 BP 神经网络是一种基于使用 BP 算法进行误差反向传播的多层前馈神经网络。二、BP 神经网络的由来 20世纪80年代在人工神经网络的发展历史上,感知机(Multilayer Perceptron,MLP)网络曾对人工神经网络的发展发挥了极大的作用,也被认为是一种真正能够使用的人工神经网络模型,它的出现曾掀起了人们研究人工神经元网络的热潮。单层感知网络(M-P模型)做为

因为要用到神经网络算法,之前接触过一些机器学习的皮毛还是半知半解,先着手练习一些比较好理解的小项目吧,新手上路见笑了。开始: 文章目录回归模型(keras)一元二次模型调整与改进阶段1——修改epochs阶段2——修改学习率 回归模型(keras)一元二次模型先放模型: 样本训练数据随机模拟就好了。引入tf库中的keras模块,程序小,所以要用到的函数我就直接单独加载了:import numpy

前言BP神经网络,可以理解为使用“BP算法进行训练”的“多层感知器模型”多层感知器(MLP)就是指得结构上多层的感知器模型递接连成的前向型网络。BP就是指得反向传播算法MLP这个术语属于历史遗留的产物,现在我们一般就说神经网络,而感知感知器是生物神经细胞的简单抽象,我们可以理解为神经网络中的一个神经元 BP神经网络(BackPropagation Neuron NetWok)首先在这里现

本文货很干,自己挑的文章,含着泪也要读完!一、认识BP神经网络       BP网络(Back-ProPagation Network)又称反向传播神经网络,分为两个过程:(1)工作信号正向传递子过程;(2)误差信号反向传递子过程。 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛

1. 一些算法概念:偏导数构成的向量为梯度;(梯度是一个向量,既有大小又有方向。)方向导数为梯度在该方向上的合成,系数为该方向的单位向量;梯度方向为方向导数最大的方向,梯度的模为最大的方向导数值;梯度垂直于等高线,同时指向高度更高的等高线;隐函数可以看成是一种等高线,其梯度为高维曲面(曲线)的法向量 2. BP算法是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用

搭建一个简易神经网络(PyTorch) 就是通过对 权重参数(w1,w2) 的更新来优化模型。 一个批次的数据从输入到输出的完整过程是:先输入 100 个具有 1000 个特征的数据;经过隐藏层后变成 100 个具有 100 个特征的数据;再经过输出层后输出 100 个具有 10 个分类结果值的数据;在得到输出结果之后计算损失并进行后向传播,这样一次模型的训练就完成了。'''导入必要的包,

文章目录前言一、简介二、BP神经网络的网络流程1.结构2.流程3.实例4.优缺点总结 前言BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络模型之一。一、简介BP神经网络是一种多层的前馈神经网络,其主要的特点是:是前向传播的,而误差是反向传播的。

1. 简介2. 计算过程3. 权重偏置更新公式推导4. BP神经网络优劣势1. 简介BP(back propagation)神经网络是1986年由Rumelhart和McClelland为首的科学家提出的概念,是一种按照误差逆向传播算法训练的多层前馈神经网络,是应用最广泛的神经网络。 BP网络是在输入层与输出层之间增加若干层(一层或多层)神经元,这些神经元称为隐单元,它们与外界没有直接的联系,但其

BP神经网络算法原理BP神经网络算法是一种神经网络学习算法[4],其原理是在梯度下降法,利用梯度搜索技术,以期使网络的实际输出值和期望输出值的误差均方差为最小。其优点在于泛化能力、自学习和自适应能力强,及特别适合于求解内部机制复杂的问题。BP神经网络算法步骤BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是反向传播,从输出层到隐

BP神经网络方法。人工神经网络是近几年来发展起来的新兴学科,它是一种大规模并行分布处理的非线性系统,适用解决难以用数学模型描述的系统,逼近任何非线性的特性,具有很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经到了各个领域。近年来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络,BP网络是最有效、最活跃

在训练神经网络的时候,我们会看到Batch、Epoch和Iteration这几个概念。 名词解释:名词定义Epoch使用训练集的全部数据对模型进行一次完整的训练,被称之为“一代训练”Batch使用训练集中的一小部分样本对模型权重进行一次反向传播的参数更新,这一小部分样本被称为“一批数据”Iteration使用一个Batch数据对模型进行一次参数更新的过程,被称之为“一次训练”Epoch(时期):当

1、BP神经网络的MATLAB训练Gradient是什么意思?Performance是什么意思?,大神能解释一下吗?谢谢了Gradient是梯度的意思,BP神经网络训练的时候涉及到梯度下降法,表示为梯度下降的程度与训练过程迭代次数(步长)的关系。Performance是神经网络传递误差大小的意思,表示为均方差与训练过程迭代次数(步长)的关系。谷歌人工智能写作项目:小发猫2、什么是梯度消失?如何加快

RBF神经网络与BP神经网络都是非线性多层前向网络,它们都是通用逼近器。对于任一个BP神经网络,总存在一个RBF神经网络可以代替它,反之亦然。但是这两个网络也存在着很多不同点,这里从网络结构、训练算法、网络资源的利用及逼近性能等方面对RBF神经网络和BP神经网络进行比较研究。(1)从网络结构上看。 BP神经网络实行权连接,而RBF神经网络输入层到隐层单元之间为直接连接,隐层到输出层实行权连接。B

真三国无双4 特别版电脑版下载安装教程2025版,详细讲解下载、安装、兼容性设置、运行配置与常见问题解决方法。提供简体中文稳定版下载地址,支持Windows 10 / 11系统,重温最热血的三国动作经典。 ...

一.实验内容 正确使用msf编码器,使用msfvenom生成如jar、php之类的其他文件,并用virustotal进行检测,会使用基本的免杀工具 通过组合应用各种技术实现恶意代码免杀 用另一电脑实测,在杀软开启的情况下,可运行并回连成功 二.基本问题 1.杀软是如何检测出恶意代码的? 特征码检测: ...

全球及中国汽车螺旋弹簧行业“十四五”规划与发展趋势预测报告2022-2028年【出版机构】:鸿晟信合研究院本文的2022-2028年的预测数据是基于过去几年的历史发展、行业专家观点、以及本文分析师观点,综合给出的预测。2021年中国占全球市场份额为 %,美国为%,预计未来六年中国市场复合增长率为 %,并在2028年规模达到 百万美元,同期美国市场CA

1 HTTP(超文本传输协议)的一个核心局限性HTTP(超文本传输协议)的一个核心局限性:通信是 “请求 - 响应” 模式,且由客户端(Client)主动发起,服务器(Server)无法 “主动推送” 数据给客户端,除非客户端先发送请求。1. 图中内容拆解流程逻辑:客户端(左侧界面)向服务器(右侧象 ...

近期在网络上看到有网友抱怨Android游戏源代码找不到,所以小弟收集了一些AndEngine和Libgdx的游戏源代码,以Eclipseproject的形式配置好环境,再陆续发出(某引擎避嫌,不在此列)。虽说这些游戏,主要是由Libgdx与AndEngine开发的源代码组成。但其实,能算游戏的,开源的,举凡有点价值的Android游戏源代码,小弟也会陆续收集(比方Rep

THE END
0.文物保护修复方案范文为了避免经验主义,以既定的模式干预文物,更为了杜绝文物越保越坏,错误地选择不当的理念、方法和材料,对文物今后的长期保存留下后患,我们必须以全面系统的分析和研究作为馆藏文物保护技术干预的前提和基础。要以可靠性、确定性、持久性的通用标准选择最佳保护方案,不是简单地只对文物表征进行观察,而应更深入了解文物各jvzquC41yy}/i€~qq0ipo8mcqyko1;63847/j}rn
1.四川盆地下寒武统龙王庙组碳酸盐缓坡双颗粒滩沉积模式及储层成因【摘要】: 四川盆地下寒武统龙王庙组气藏是迄今我国发现的单体规模最大的特大型海相碳酸盐岩整装气藏。为剖析其沉积模式及储层成因,通过地质构造、沉积背景和沉积相综合研究与岩相古地理编图,发现自川西向渝东南地区,龙王庙组依次发育后缓坡混积潮坪、内/浅缓坡颗粒滩(上滩) 下载App查看全文 下载全文 更多同类文献 个人查重>> 个人AIjvzquC41yy}/ewpk0eun0ls1Ctzjeuj1ELLEVxycn/ZSSP7238672970jvs
2.为祖国寻找矿藏:资源学院服务国家战略纪实通过持续开展教育教学研究、创新人才培养模式和机制、打造一流教师队伍,取得了丰硕的教学成果。由赵鹏大院士牵头的《地学类创新人才培养方法和途径》获国家教学成果二等奖、姚光庆教授牵头的《资源勘查工程专业“333”人才培养模式持续创新与实践》获湖北省教学成果一等奖;焦养泉教授领衔的《聚煤盆地沉积学(教材)》获湖北省jvzquC41yy}/e~l0gf{/ew4kphu039:281?479>0jvs
3.邹才能等:世界能源转型内涵路径及其对碳中和的意义新能源国际油公司转型战略以清洁化、低碳化能源生产和能源综合服务为目标,主要包括3个方面:①加大公司天然气业务,提升天然气产业的盈利能力(图10);②加大电气化、新能源领域投资比例,大力发展新能源业务(图11);③转变商业运营模式,从聚焦能源生产到为客户提供能源解决方案[26-27]。jvzq<84hkpgoen3ukpg/exr0ep5nqwj{1h{uw{j1tqrm1;543/63/9>1fqi.ktkvuugq799533=/uqyon
4.钾锂科技产业主要产业(2)该资源来自于海相沉积,富含多种对人体有益的微量元素,具有海盐天然营养的特点,是目前国内唯一的天然绿色低钠盐,市场前景可期。公司与有“盐业黄埔”之称的天津科技大学合作开展《恒成多组份卤水蒸发结晶过程》的中试研究,取得了较好的研究成果。 4.开展及完成了“资源混采中试”和“混采卤水综合利用中试”双试jvzquC41yy}/jlov38>/exr1ujux/:7/5/7/j}rn