近断层地震动模拟现状

国家重点基础研究发展计划项目“城市工程的地震破坏与控制”子课题“近场强地震动的破坏作用及其空间分布规律”(编号:2007CB714201);国家自然科学基金重大研究计划项目“强震动破坏性作用特性及地震动场模拟方法研究”(编号:90715038);中国地震局工程力学研究所中央级公益研究所基本科研业务费专项“近场强地震动预测研究”(编号:2007B13)资助.

Wang Haiyun1,Xie Lili1,2

地震动是由3个物理过程(震源破裂过程、波传播过程、场地反应)组成的一种复杂系统的产物,地震动模拟均是围绕这3个物理过程的建模开展的。地震动模拟目前仍然是一门相对较新的科学,强震观测中不断发现的新情况、新问题及其深入研究进一步推动近断层地震学理论和实践的发展。减少建模中的不确定性,用基于观测物理学的统计特征逐渐取代基于现象的假设描述,以改善地震动模拟的精度。基于大量地震动模拟的研究文献和资料,归纳、评述了近断层地震动模拟方法的现状、3个物理过程的建模方法及其发展趋势。

The ground motion is the outcome of a complicated system that consists of three physical processes (i.e., earthquake source rupture process, seismic wave propagation, and site response), and is simulated based on modeling the three physical processes. The ground motion simulation is a relative new discipline. New cases and problems discovered progressively in strong motion observation and lucubrated on them will further promote development of both theory and practice about near-fault seismology. The precision in ground motion simulation will be improved by both reducing uncertainties in models and substituting statistical characteristics based on observation physics for hypotheses based on some phenomena. The present situation of simulation methods of near-fault ground motion, methods of modeling three physical processes, and their trends are reviewed based on a lot of literatures and data on ground motion simulations.

中图分类号:

[1] Aki K,Richards P G. Quantitative Seismology: Theory and Methods[M]. New York:W H Freeman & Co Ltd,1980.

[2] Boore D M. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America,1983,73:1 865-1 884.

[3] Boore D M. Simulation of ground motion using the stochastic method[J]. Pure and Applied Geophysics,2003,160:635-676.

[4] Hartzell S. Earthquake aftershocks as Green′s functions[J]. Geophysical Research Letters,1978,5:1-4.

[5] Irikura K. Semi-empirical estimation of strong ground motions during large earthquakes[J]. Bulletin,Disaster Prevention Research Institute,Kyoto:Kyoto University,Japan,1983,33:63-104.

[6] Beresnev I,Atkinson G. FINSIM:A FORTRAN program for simulating stochastic acceleration time histories from finite faults[J]. Seismological Research Letters,1998,69:27-32.

[7] Motazedian D,Atkinson G M. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency[J]. Bulletin of the Seismological Society of America,2005,95(3):995-1 010.

[8] Kamae K,Irikura K,Pitarka A. A technique for simulating strong ground motion using hybrid green′s function[J]. Bulletin of the Seismological Society of America,1998,88(2):357-367.

[9] Hartzell S,Harmsen S,Frankel A,et al. Calculation of broadband time histories of ground motion:Comparison of methods and validation using strong-ground motion from the 1994 northridge earthquake[J]. Bulletin of the Seismological Society of America,1999,89(6):1 484-1 504.

[10] Pitarka A,Somerville P,Fukushima Y,et al. Simulation of near-fault strong-ground motion using hybrid Green′s functions[J]. Bulletin of the Seismological Society of America,2000,90:566-586.

[11] Somerville P G. Emerging art:Earthquake ground motion[C]∥Dakolas P,Yegian M,eds. Proceedings-Geotechnical Earthquake Engineering and Soil Dynamics III,ASCE Speciality Conf. Special Pub. No.75,Seattle,WA,1998:1-38.

[12] Luo Qifeng,Hu Yuxian. An improved empirical Green function method and synthesis of near-field acceleration in Lulong earthquake[J].Journal of Earthquake Engineering and Engineering Vibration,1990,10(3): 1-12.[罗奇峰,胡聿贤. 改进的经验格林函数法和卢龙近场加速度合成[J]. 地震工程与工程振动,1990,10(3):1-12.]

[13] Wang Guoxin. A study on attenuation of strong ground motion[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2001.[王国新,强地震动衰减研究[D]. 哈尔滨:中国地震局工程力学研究所,2001.]

[14] Wald D J,Heaton T H,Hudnut K W. The slip history of the 1994 Northridge,California,earthquake determined from strong-motion,teleseismic,GPS,and leveling[J]. Bulletin of the Seismological Society of America,1996,86: S49-S70.

[15] Wang Haiyun. Finite fault source model for predicting near field strong ground motion[D]. Harbin: Institute of Engineering Mechanics,China Earthquake Administration,2004.[王海云. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨:中国地震局工程力学研究所,2004.]

[16] Zhang Xiaozhi,Xie Lili,Wang Haiyun,et al. Illustrative example in simulating near-fault ground motion field by explicit finite element method[J]. Journal of Earthquake Engineering and Engineering Vibration,2005,25(6):5-11.[张晓志,谢礼立,王海云,等.近断层强地面运动影响场显式有限元数值模拟的示意性算例[J].地震工程与工程震动,2005,25(6):5-11.]

[17] Zhang Xiaozhi,Xie Lili,Wang Haiyun,et al. Models and methods for simulating near-fault ground motion field of a city by explicit finite element method[J]. Journal of Earthquake Engineering and Engineering Vibration,2006,26(6):11-16.[张晓志,谢礼立,王海云,等.某正倾滑断层引起的近断层强地面运动的有限元数值模拟[J].地震工程与工程震动,2006,26(6):11-16.]

[18] Pan Bo,Xu Jiandong,Haruko Sekigguchi,et al. Simulation of the near-fault strong ground motion in BEIJING region[J]. Seismology and Geology,2006,28(4):623-634.[潘波,许建东,关口春子,等.北京地区近断层强地震动模拟[J].地震地质,2006,28(4):623-634.]

[19] Reid H F. The earthquake of southeastern Maine, March 21,1904[J]. Bulletin of the Seismological Society of America,1911,1:44-47.

[21] Miyake H,Iwata T,Irikura K. Source characterization for broadband ground-motion simulation:Kinematic Heterogeneous source model and strong motion generation area[J]. Bulletin of the Seismological Society of America,2003,93(6):2 531-2 545.

[22] Zeng Y,Anderson J,Yu G. A composite source model for computing realistic synthetic strong ground motions[J]. Geophysical Researth Letters,1994,21:725-728.

[23] Frankel A. Simulating strong motions of large earthquakes using recordings of small earthquakes:The Loma Prieta mainshock as a test case[J]. Bulletin of the Seismological Society of America,1995,85:1 144-1 160.

[24] Herrero A,Bernard P. A kinematic self similar rupture process for earthquakes[J].Bulletin of the Seismological Society of America,1994,84:1 216-1 228.

[25] Bernard P,Herrero A,Berge C. Modeling directivity of heterogeneous earthquake rupture[J]. Bulletin of the Seismological Society of America,1996,86:1 149-1 160.

[26] Somerville P,Irikura K,Graves R,et al. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismological Research Letters,1999,70:59-80.

[27] Mai P M,Beroza G C. A spatial random field model to characterize complexity in earthquake slip[J]. Journal of Geophysical Research,2002,107(B11):2 308.

[28] Hisada Y. A theoretical omega-square model considering the spatial variation in slip and rupture velocity[J]. Bulletin of the Seismological Society of America,2000,90:387-400.

[29] Hisada Y. A theoretical omega-square model considering the spatial variation in slip and rupture velocity,part 2:Case for a two dimensional source model[J]. Bulletin of the Seismological Society of America,2001,91: 651-666.

[30] Gallovic F,Brokesove J. On strong ground motion synthesis with k-2 slip distributions[J]. Journal of  Seismology,2004,8(2):211-224.

[31] Wang Haiyun,Tao Xiaxin. Characterizing a shallow earthquake asperity model for predicting near field strong ground motion[J]. Journal of Harbin institute of technology,2005,37(11):1 533-1 539.[王海云,陶夏新. 近场强地震动预测中浅源地震的Asperity模型特征[J]. 哈尔滨工业大学学报,2005,37(11):1 533-1 539.]

[32] Silva W J,Lee K. WES RASCAL code for synthesizing earthquake ground motions[C]∥State of the Art for Assessing Earthquake Hazards in the United States,Report 24,US Army Engineers Waterway Experiment Station,Misc.1987: S-73-1.

[33] Schneider J F,Silva W J,Stark C L. Ground motion model for the 1989 M6.9 Loma Prieta earthquake including effects of source,path,and site[J]. Earthquake Spectra,1993,9(2):251-287.

[34] Hutchings L. Kinematic earthquake models and synthesized ground motion using empirical Green′s functions[J]. Bulletin of the Seismological Society of America,1994,84:1 028-1 050.

[35] Heaton T H,Hall J F,Wald D J,et al. Response of high-rise and base-isolated buildings to a hypothetical Mw 7.0 blind thrust earthquake[J]. Science,1995,267:206-211.

[36] Jarpe S P,Kasameyer P W. Validation of a procedure for calculating broadband strong-motion time histories with empirical Green′s functions[J]. Bulletin of the Seismological Society of America,1996,86:1 116-1 129.

[37] O′Connell D R H. Synthesizing site-specific near-field ground motinos from reverse faults:New perspectives on peak velocity hazards using broadband site responses[R]. Earthquake Engineering Research Institude,Proceedings CDROM of the Sixth U.S. National Conference on Earthquake Engineering,1998.

[38] O′Connell D R H. Replication of apparent nonlinear seismic response with linear wave propagation models[J]. Science,1999,283:2 045-2 050.

[39] Zeng Y,Anderson J. Evaluation of numerical procedures for simulating near-fault long-period ground motions using the Zeng method[R]. Pacific Earthquake Engineering Research Center Utilities Program Report 2000/01,2000.

[40] Day S M. Efficient simulation of constant Q using coarse-grained memory variables[J]. Bulletin of the Seismological Society of America,1998,88:1 051-1 062.

[41] Boore D M,Joyner W B. Site amplifications for generic rock sites[J]. Bulletin of the Seismological Society of America,1997,87(2):327-341.

[42] Anderson J G,Hough S. A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies[J]. Bulletin of the Seismological Society of America,1984,74(5):1 969-1 993.

[43] Bonilla L F. Computation of linear and nonlinear response for near field ground motion[D]. Santa Barbara:University of California,2000.

[44] Graves R W,Pitarka A,Somerville P G. Ground motion amplification in the Santa Monica area: Effects of shallow basin edge structure[J]. Bulletin of the Seismological Society of America,1998,88:1 224-1 242.

[45] Kawase H. The cause of the damage belt in Kobe: “The basin-edge effect,” constructive interference of the direct S-wave with the basin-induced diffracted/Rayleigh waves[J]. Seismological Research Letters,1996,67(5):25-34.

[46] Pitarka A,Irikura K,Iwata T,et al. Three-dimensional simulation of the near-fault ground motions for the 1995 Hyogo-Nanbu(Kobe), Japan, earthquake[J]. Bulletin of the Seismological Society of America,1998,88: 428-440.

[47] Alex C M,Olsen K B. Lens-effect in Santa Monica?[J]. Geophysical Researth Letters,1998,25:3 441-3 444.

[48] Davis P M,Rubinstein J L,Liu K H,et al. Northridge earthquake damage caused by geologic focusing of seismic waves[J]. Science,2000,289:1 746-1 750.

[49] Schultz C A. Enhanced backscattering of seismic waves from irregular interfaces[D]. Cambridge:Massachusetts Institue of Technology,1994.

[50] Bouchon M,Schultz C A,Toksoz M N. Effect of three-dimensional topography on seismic motion[J]. Journal of Geophysical Research,1996,101:5 835-5 846.

[51] Spudich P,Hellweg M,Lee W H K. Directional topographic site response observed in aftershocks of the 1994 Northridge,California,earthquake: Implications for main shock motions[J]. Bulletin of the Seismological Society of America,1996,86:S193-S208.

[52] Stewart J P,Chiou S J,Bray J D,et al. Ground Motion Evaluation Procedures for Performance-Based Design[R]. PEER Report 2001/09. Pacific Earthquake Engineering Research Center,College of Engineering, University of California,Berkeley,2001.

[53] Ashford S A,Sitar N,Lysmer J,et al. Topographic Effects on the Seismic Response of Steep Slopes[J]. Bulletin of the Seismological Society of America,1997,87:701-709.

[54] Ashford S A,Sitar N. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the Seismological Society of America,1997,87:692-700.

[55] Oreskes N,Shrader-Frechette K,Belitz K. Verification,validation,and confirmation of numerical models in the Earth sciences[J]. Science,1994,264:641-646.

THE END
0.【毕业论文小记】从Peer下载到近断层脉冲地震动生成——基于一个完全本文讲述了作者在撰写毕业论文时,如何生成所需的近断层地震动,包括设计反应谱、从Peer获取地震波、数据转换和使用Python工具合成的过程,以及解决遇到的技术难题。 如果因为TA和游戏相关关注我的朋友们,看到这篇可以不用继续往下看了啊啊啊啊!不是跑路了不是跑路了!毕业论文需要(本专业土木人的心酸)!! jvzquC41dnuh0lxfp0tfv8vsa6795>8361gsvrhng1jfvjnnu1748=7497<
1.近断层脉冲型地震作用下高铁简支梁桥减隔震支座参数分析近断层脉冲型地震动较远场地震动对桥梁产生更为严重的地震破坏,研究恢复力模型为双折线的减隔震支座和桥梁地震响应的匹配关系,可有效提高临近断层高铁桥梁的抗震性能。以某32 m跨径高铁双线简支梁桥为研究对象,采用OpenSees建立五墩四跨有限元模型,研究 机构: 石家庄铁道大学省部共建交通工程结构力学行为与系统安全jvzquC41ycv/ewpk0pku1}twej5xgk4Lqwxocu4Ctvodnn4VFDY32;:332730qyon
2.近断层观测与破裂震相识别开启地震破裂研究新篇章中国科学: 地球科学 SCIENTIA SINICA Terrae 点评 2025 年第 55 卷第 6 期: 2101 ~ 2103 earthcn.scichina.com 近断层观测与破裂震相识别开启地震破裂研究 新篇章 姚华建1, 陈晓非2* 1. 中国科学技术大学地球和空间科学学院, 合肥 230026 2. 南方科技大学地球与空间科学系, 深圳 518055 * 通讯作者: chenxfjvzquC41yy}/ulngpioog7hqo1jpk8ufhXofy8F64D84G:5FDF:9F?F8G7G36@;83263::
3.近断层地震动作用下隔震结构动力响应特征研究随着隔震技术的不断研究发展和隔震项目经验的不断积累,基础隔震结构在国内外得到越来越多的关注与应用。而几十年来发生的带来巨大影响的地震,如台湾集集地震、美国北岭地震、汶川地震等都引起了海内外学者对近断层地震动的研究热情,也取得了一些有用的研究成果。近断 [jvzquC41ycv/ewpk0pku1uzpygt.396:48;17;3jvor
4.近断层脉冲地震作用下高速铁路简支梁桥梁近断层脉冲地震作用下高速铁路简支梁桥梁-轨系统动力性能研究,近断层地震动,高速铁路,脉冲效应,桥梁-轨道系统,参数分析,行波效应,近年来,随着我国高速铁路建设的快速发展且向着西部多断层地区逐渐推进,导致高速铁路桥梁的修建面临着近断层地震的影响。近断层地jvzquC41ycv/ewpk0pku1uzpygt.3973:::62;3jvor
5.近断层地震动作用下土石坝加速度分布研究近断层地震动较远场地震动具有频率高、速度快、能量更加集中的特点,在短时间内会释放大量能量,对工程结构具有严重危害。规范提供的加速度分布系数不适用于高度超过150m的大坝,随着技术不断进步,我国超过150m的土石坝越来越多,规范已不能满足现有需求。本文基于台湾集集近断层地震动记录,建立随机脉冲型地震动模型,分别jvzquC41lxy/usyw0gjv0ls1EP5Z49761X:41R6618<
6.土耳其地震序列的近断层脉冲型地震动识别与特征分析2023年2月土耳其东安纳托利亚断裂带连续发生多次6级以上强震,为揭示此次强震序列中的近断层地震动特征,选取土耳其Mw7.8、Mw7.5、Mw6.7和Mw6.3的四次地震中的781组强震记录,基于能量法识别获得45条水平向脉冲型地震动记录和17条竖向脉冲型地震动记录,其中水平向75%的脉冲型地震动来自于Mw7.8地震。通过分析识别的速度jvzquC41lxy/usyw0gjv0ls1EP5Z49751X:31R75197
7.近断层地震动速度大脉冲对典型结构影响的概述在近断层地震中,具有速度大脉冲的强震记录对建筑物的影响较大。通过比较可以得出结论:在弹性阶段,结构在有速度脉冲记录和无速度脉冲地震动作用下的反应无明显差别,而进入弹塑性阶段后,有速度脉冲记录作用下,结构的反应和无速度脉冲记录作用下的反应相比有明显的增大;在结构反应的各种参数中,对有、无速度脉冲的作用,速jvzquC41kt4cl~y0gf{/ew4kvgs0498;:;
8.近断层边坡概率地震位移危险性分析——以鲜水河走滑断层炉霍基于永久位移的边坡概率地震危险性分析可用于评估边坡在未来潜在地震事件中发生失稳的风险,并提供一定设防水准下的边坡地震位移和滑坡危险性区划结果.通过将不同场地边坡可能遭受的地震事件分为近断层速度脉冲、近断层非脉冲以及远场地震动,基于不同类型地震动作用引 jvzquC41tgge0lsmk0tfv8|gd1Ppw{scn1Gsvrhng1JRYa7247722:80jvsm
9.近断层地震动作用下大跨斜拉桥的复杂地震响应研究【摘要】:近断层地震动具有区别于远场地震动的显著地面运动特征,如震害集中性、破裂前方效应、滑冲效应、上/下盘效应以及竖向效应等。近断层效应使得位于断层附近或者跨越断层的长周期斜拉桥地震响应更加强烈和复杂。本文基于国家自然科学基金资助项目“斜拉桥近场地震‘活断层 jvzquC41efse0lsmk0ipo7hp1Cxuklqg1EJNF6624:<.396897;1;A3jvo
10.近断层强地震动场预测摘要: 以1997年4月11日新疆伽师地震(Mw6.1)为例,详细介绍了近断层强地震动场的预测方法.首先,用有限断层震源建模方法建立了该次地震的震源模型;然后,基于动力学拐角频率的地震动随机模拟方法,模拟了该次地震仅有主震加速度记录、且位于巨厚土层上的三个台站的加速度时程,并用实际地震记录进行了验证.在此基础上jvzq<84yyy4e|t}0qtm0c{ykenk0km4elie:7<
11.国家知识仓储近断层地震动 / 破裂的方向性效应 / 地表破裂 / 速度脉冲 / 上盘效应 Key wordsNear-fault ground motion / rapture directivity effect / surface rupture / velocity pulse / hanging-wall effect 分类地球物理学 引用文本复制引用 近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.jvzquC41rwhot7scruzje7hp1rkskxikecrBt}neng5139i|ieheƒi422<13953
12.近断层深埋巷道掘进变形破坏规律为此,以海石湾煤矿一条深埋进风巷道为例,研究其临近断层掘进过程中围岩应力、位移、塑性区和剪应变演化特征,分析断层倾角、破碎带宽度和侧压力系数对巷道围岩稳定性的影响。结果表明:当深埋巷道与断层净间距小于5 m时,随着深埋巷道掘进移近断层,巷道周边塑性区岩体剪应变逐渐增大,进而导致深埋巷道围岩位移呈指数式jvzquC41zwkccx3jrw4ff~3ep1oohx432::81B86:24ivv
13.近直下型断层的地铁车站结构地震响应目前在近断层场地中地下地铁车站抗震性能水平认识方面相对匮乏,鉴于此,提出了一种考虑发震断层-地下结构全过程地震响应的IBE-FEM联合求解分析方法。首先,基于运动学有限断层模型,采用间接边界元方法(IBE)求解直下型走滑断层错动作用下上覆软土沉积层场地内的地震波场,并验证了有限元法(FEM)间接求解地震波场的可行性;在jvzquC41yy}/epjlqwxocu3eqo5dp8ftvkimg8nf1;h9g;g37/l9eB269:;.d9h6/7h9eni;66g25
14.近断层地震动的上/下盘效应研究【摘要】: 近断层地震动由于其自身不同于远场地震动的特征以及对工程结构产生的严重破坏,成为近年来工程地震界的研究热点。近断层地震动的影响因素众多,除受常规的震源、路径以及场地条件影响外,还与上/下盘效应和破裂方向性效应密切相关,两者对近断层地震动的峰 【学位授予单位】:中国地震局工程力学研究所 【jvzquC41efse0lsmk0ipo7hp1Cxuklqg1EJNF6=762<.496238=63?3jvo
15.近断层砂化白云岩隧洞突水涌砂演化过程及防突岩盘安全厚度研究近断层砂化白云岩隧洞突水涌砂演化过程及防突岩盘安全厚度研究 张延杰1,2,董家兴3,周志强3,周伦顺3,米 健4,刘登学5 (1. 云南省滇中引水工程有限公司,云南 昆明 650000;2. 昆明理工大学 国土资源工程学院,云南 昆明 650093; 3. 昆明理工大学 电力工程学院,云南 昆明 650500;4. 云南省水利水电勘测设计研究院,jvzquC41tqilonhj0ynsuv3ce0io1LS1cdyutjhv1chtv{fev6933;3ujvsm