nsysechanical屈曲分析技术

当受拉杆件的应力达到屈服极限或强度极限时,将引起塑性变形或断裂。这些是由于强度不足所引起的失效。

在工程中,我们会注意到当细长杆件受压时,表现出与强度失效完全不同的性质。当杆件受压超过某一临界值时,再增加压力,杆件会产生很大的完全变形,最终折断。内燃机配气机构中的挺杆,空气压缩机,蒸汽机的连杆等都是这样的受压构件。

日常生活中,我们也有很多这样的经验。此时如果根据拉压杆件的强度公式进行校核,会发现此时杆件所受的压应力远小于屈服极限或强度极限。此时,我们说结构丧失了稳定性,属于结构稳定性分析的范畴。

同样,对于薄板结构(如筒仓,钢塔),也同样存在受压载荷作用下的稳定性问题。

稳定性问题根据失稳发生的区域又分为整体稳定性与局部稳定性。

国内外的设计规程规范详细地规定了稳定性设计的技术指标,从结构设计方面保证了结构在稳定性方面的技术要求,如《钢结构设计标准GB50017-2010》、《空间网格结构技术规程 JGJ7-2010》等。对于非标构件,使用有限元校核也提出了明确的方法。初始缺陷的施加是稳定性分析中一个重要的环节,我们看到《钢结构设计标准GB50017-2010》中给出了确定方法。试验方法和有限元方法的结合广泛应用在强度设计和稳定性设计中。

2. ANSYS Mechanical屈曲分析

下图是一端固定,另一端受压的柱子,当F增加到一个临界值后,此时如果有一个侧向的扰动,柱子顶端会产生很大的横向变形,此时结构处于不稳定状态。对于理想的无缺陷的杆件,F的临界值对应右图的分支点,对应于ANSYS Mechanical中的特征值屈曲分析。实际结构中,由于存在制造,安装误差,或者材料局部有缺陷,并不能达到分支点失稳,而是在极限载荷位置即丧失稳定性,此时需要使用ANSYS Mechanical的非线性屈曲分析。

3. ANSYS Mechanical特征值屈曲分析

ANSYS Mechanical特征值屈曲是一种形式的线性扰动分析,上游的静力分析模型可以是线性的,也可以是非线性的。

特征值屈曲分析考虑在侧向施加一个小的扰动时,结构保持稳定时所能承受的最大载荷,最终归结为切向刚度矩阵和应力刚度矩阵形成的特征方程问题。在ANSYS求解时,该过程分两个阶段,第一阶段使用重启动技术求解静力分析的切向刚度矩阵;第二阶段,生成应力刚度矩阵,更新节点坐标,求解特征值。

当特征值屈曲分析的上游分析为线性模型时,所求得的载荷系数为模型中静力分析模块所有载荷同比例放大,放大后得到的值即为所要求解的分支点载荷。

若模型中有恒定载荷,其他载荷可变,需要迭代计算,使得在特征值屈曲分析中求解的载荷系数接近1,此时在分析中所加的载荷就是分支点载荷。

当特征值屈曲分析的上游分析为非线性模型(接触非线性,材料非线性,状态非线性)时,分支点载荷为静力分析所施加载荷F(restart)与屈曲分析施加载荷乘以求得的放大系数(λi · F(perturb))之和。换算关系见下图所述。

4. ANSYS Mechanical非线性屈曲分析

ANSYS Mechanical非线性屈曲分析在求解时不使用EigenvalueBuckling模块,而直接使用静力分析模块Static Structural,加入结构的初始缺陷后直接进行大变形非线性分析。非线性屈曲分析中由于达到极限载荷后,进入刚度下降段,此时结构无法承载。刚度下降段给数值带来了困难。ANSYS Mechanical通过载荷控制、位移控制、动态方法和非线性稳定性技术等方法来确保结构在失稳后可以有效的跨越负刚度后,结构重新可以承载。

这四种方法的详细介绍,可参考帮助文档。

5. 典型案例

6. 其他典型案例

以下案例,通过提取结构的每阶屈曲模态并乘以0.1倍的放大系数作为有缺陷的几何,对前10阶特征屈曲模态共修改几何构型10次,得到缺陷最大值约为1mm的几何模型,进行非线性屈曲分析。

以下案例模拟了土壤环境与钢管结构之间的相互作用。采用莫尔-库仑材料模拟了土体的非线性塑性行为。该问题考察了缺陷对结构响应的影响。

7. 思考题

a). 为什么求得的载荷放大系数为负值?

回答:负值表示和所加载荷的方向相反

b). 屈曲载荷的放大系数是对所有载荷进行放大吗?

回答:对线性模型的特征值屈曲分析而言,是的

c). 结构处于拉应力状态,如何进行屈曲分析?

回答:不需要

d.) 屈曲分析时,为什么施加Force和施加Pressure得到的特征值不一样,该如何解决?

回答:当施加Pressure时,通过Normal to方式定义会产生额外的“压力刚度”贡献,不同于常规的施加载荷的分析,此时法向力是一个跟随力,会随着结构的变形而改变方向。处理方法:使用Component/Vector方式得到常数力而不使用Normal to的定义方式。

8. 屈曲分析ACT

该ACT提供了更便捷的初始缺陷定义方法。

在Discovery Live产品中也有ACT提高工作效率。

9. ANSYS学习资源

参考文献:

【1】    刘鸿文,主编. 材料力学. 高等教育出版社,1979

【2】    ANSYS Help文档

【3】    王勖成,邵敏,编著. 有限单元法基本原理和数值方法. 清华大学出版社,1997

THE END
0.AnsysWorkbench断裂力学分析能力介绍断裂力学如此重要, ANSYS Workbench从14.5版本开始引入断裂计算,至今有如下分析能力: 1、断裂力学参数计算 ANSYS支持椭圆形裂纹(结构化网格和非结构化网格实现)、任意裂纹(非结构化网格实现)、预定义裂纹的应力强度因子、能量释放率、J积分、C积分、材料力等断裂力学参数的计算。 2、裂纹扩展计算 ANSYS裂纹扩展计算可以使用如 jvzq<84yyy4489iqe0ipo8hqpvkov87412;4286913;:3<588a715<=5:;750|mvon
1.混凝土结构的裂缝和其ANSYS分析.pdf§蹈 混凝土结构的裂缝及其ANSYS分析 1.问题的提出 ;Iovehome一钢筋混凝土简支梁受较大集中荷载,在ANSYs6.1中plot crete plot看到裂缝后,如何查看这些裂缝的宽度和深度?在进入非线性状态后,如何模拟 裂缝开展并得到最终裂缝宽度? 2.非线性分析中混凝土裂缝的处理 ?idaro (1)裂缝的产生机制 混凝土的抗拉强度比抗压jvzquC41oc~/dxtm33>/exr1jvsm1;5391672<4333999;890unuo
2.基于ansysworkbench的传动轴静动态特性分析万方数据知识服务平台与全球国内外30余家大型数据库集成商、出版商、公益机构达成战略合作,整合数亿条全球优质学术资源,集成期刊、学位、会议、专利、科技报告、成果、标准、法规、地方志、视频等十余种学术资源类型。平台基于先进的人工智能技术,打造涵盖资源发现、学术jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1vlwd496;28622
3.ANSYS常见问题要点进行热分析的时候在面上加入硬点后会产生该问题,形成该问题不会影响具体进行的热分析。继续进行下一步的操作就ok。 (1)弹簧创建时两个端点其中有一个未建立或者弹簧建在一个点上了,导致创建的弹簧只在一个点上,长度为0。 (2) 8、 ansys 怎样保持背景色为白色的图片? 1,背景变为白色:plotctrls---stylejvzquC41o0972mteu0tfv8iqe1=54B:4:2>/j}rn
4.ansys教程(185.1GB)百度网盘资源下载SMS24-ANSYS Workbench 结构断裂力学数值模拟技术视频教程6.8GB DVD2-结构断裂力学分析2.rar4.1GB DVD1-结构断裂力学分析1.rar2.7GB SMS23-ANSYS Workbench 结构有限元热点问题核心技术视频教程6.7GB DVD2-结构有限元热点问题核心技术2.rar3.6GB DVD1-结构有限元热点问题核心技术1.rar3.0GB jvzquC41yy}/krjk0io1{juqwxdg8igvcom1Ak8f;:5;:k2538chlg795g8fkj377g6;
5.ANSYSWorkbench有限元分析实例详解(静力学)此外,有限元法是实际工程设计的一种数学辅助方法,为实际工程而服务,主要解决的是难以被实验验证的工程问题,切忌为数学分析而分析。 就有限元软件运用而言,特别是操作简单、容易上手、方便处理复杂工程模型的ANSYS Workbench,很多初学者在学习过程中也往往依葫芦画瓢,不了解软件输入的每一个参数的来龙去脉。这样致使初jvzquC41yy}/gyzdkv4dqv4dqqqEg}fknuEjfFS44;?8
6.AnsysncodeDesignlife19.0疲劳与裂纹扩展分析资料教程◆Ansys ncode Designlife19.0疲劳与裂纹扩展分析资料教程 ◆断裂模型 [打开] ├┈2-1边裂纹的应力强度因子计算 .txt ├┈2-2含中心斜裂纹平板的冲击作用下的动态应力强度因子计算-不考虑接触.txt ├┈2-4 T型焊接接头模型.agdb ├┈3-1-三维中心穿透裂纹-J积分.txt jvzq<84wi38467hqo1zfcv{kgye62B64;34ivvq
7.Mechanical联合ANSYSnCodeDesignLife在实体焊缝疲劳分析中的应用本文主要介绍了ANSYS nCode DesignLife实体焊缝疲劳分析方法,该方法基于结构应力法,具有较高的普适性,无需对网格进行特殊控制。文章概述了实体焊缝疲劳分析的一般流程,包括基于DesignLife理论对实体焊缝疲劳分析方法进行概述、基于ANSYS Mechanical创建有限元求解、基于nCode Weldline创建实体焊缝信息、基于ANSYS nCode DesignLijvzq<84yyy4gcwl|jgtyk~}kw0ipo8uquv522?>
8.有限元分析软件&有限元仿真分析软件|AnsysAnsys电机设计软件涵盖从概念设计到电机的详细电磁、热和结构分析。 了解更多 电池结构可靠性 为了确保电池的耐久性、可靠性和安全性,Ansys可提供用于优化外壳设计和增强电池安全性的仿真解决方案。 了解更多 网格划分 Ansys提供高性能的自动化网格划分软件,可为FEA、CFD和其它多物理场解决方案生成最合适的网格。 jvzquC41yy}/cwx{u0ipo8j/et0r{tfwezt1|ytwezvtnx1cpyzu6rgejgoklfn
9.基于ANSYSWorkbench界面的压力容器极限分析与弹塑性分析技术.pdf基于ANSYS Workbench界面的压力容器极限分析与弹塑性分析技术.pdf 37页 内容提供方:wendangchuan 大小:2.1 MB 字数:约2.4万字 发布时间:2019-07-04发布于陕西 浏览人气:1089 下载次数:仅上传者可见 收藏次数:1 需要金币:*** 金币(10金币=人民币1元) 基于ANSYS Workbench界面的压力容器极限分析与弹塑性jvzquC41o0hpqt63:0ipo8mvon532:>129641>6443643;72247147xjvo
10.ANSYSMechanical疲劳与断裂新功能介绍ansys断裂仿真3 ANSYS SMART功能更新 3.1 多裂纹起始(2022R2) 3.2 自动裂纹起始(2022R2) 3.3SMART裂纹扩展支持新的裂纹类型 3.4 SMART支持非比例加载 3.5 初始应力产生的裂纹面张力 3.7 止裂建模 4 ANSYS Ncode 设计 4.1 Mechanical中启动疲劳分析 4.2TimeSeries分析中设置静载 jvzquC41dnuh0lxfp0tfv8xjafppkw4ctvodnn4fgvgjn|4364675B>8
11.断裂力学更详细信息参见《TheoryReferenceforANSYSandANSYSWorkbench》中的《Gursons Model》和 GURSON命令文件。 4.2 断裂力学的求解 断裂分析是应力分析和断裂力学参数计算的结合。应力分析是标准的ANSYS线性分析或非线性塑 性分析。 由于裂纹尖端区域高应力梯度的存在,含有裂纹的构件的有限元模型须要对裂纹区特殊考虑。 裂纹尖端jvzquC41oc~/dxtm33>/exr1jvsm1;5391672:4332=84>980unuo
12.工程塑料齿轮疲劳寿命有限元分析学习园地1)采用ANSYS有限元技术可以计算复杂边界条件下的疲劳问题,对工程塑料齿轮的疲劳寿命的确定有一定价值。 2)通过ANSYS分析得出:所研究的UHMWPE材料齿轮在无缺陷情况下的疲劳寿命远高于齿根存在熔接痕情况下的寿命。 3)当熔接痕靠近UHMWPE材料齿轮齿根处时,加载后轮齿很快进人疲劳并断裂,因此需要对注塑工艺进行优化,避免jvzquC41yy}/{|zi0eun1|ywf{525;540jznn
13.GBT4732.12024:压力容器分析设计新标准解读.pptxGBT 4732.12024:压力容器分析设计新标准解读目录新标准概述与背景介绍压力容器分析设计的基本原则GBT 4732.1与旧标准的差异对比通用要求的核心内容解读设计分析方法的选择与应用材料性能要求及选用指南载荷与应力分析的基本步骤失效jvzquC41yy}/tnstgpjpe7hqo1vbrnw156<1;@=:20nuou
14.FRANC3D–微动疲劳与损伤容限分析软件采用有限元法来计算断裂力学参数,与ANSYS、ABAQUS、NASTRAN等有接口,支持所有版本 唯一能够同时计算各向同性和各向异性材料中KI、KII、KIII的断裂力学软件 能够分析裂纹前缘跨越多种材料的裂纹,如焊缝区域的裂纹扩展问题; 可以分析“多轴-不同相位”的复杂疲劳裂纹扩展 jvzquC41yy}/h{fpe5j/exr1