螺纹紧固件的松脱机理

几乎每个复杂程度的工程产品都使用螺纹紧固件。与大多数其他连接方法相比,螺纹紧固件的一个关键优势是它们可以拆卸和重复使用。

这一特征通常是螺纹紧固件优于其他连接方法使用的原因,并且它们通常在保持产品的结构完整性方面发挥着至关重要的作用。

然而,它们也是机械和其他组件问题的一个重要来源。这些问题的原因是由于它们存在自松机理。这种自松机理一直是一个问题,在过去的150年里,设计者们一直在设计防止这种情况发生的方法。

螺纹紧固件的许多常见类型的锁定方法都是在100多年前发明的,然而直到近些年导致自松的主要机制才被理解。有许多机制可以导致螺纹紧固件松动, 这些可以分为旋转和非旋转松动。

旋转和非旋转松动

在绝大多数应用中,螺纹紧固件被拧紧,预紧力被施加到连接中。松动可被理解为紧固过程完成后预紧力的后续损失。这可以通过两种方式发生:

旋转松开,通常被称为自松开,是指紧固件在外部载荷的作用下旋转。

非旋转松动,是指内螺纹和外螺纹之间没有发生相对运动,但发生预载损失。

由于非旋转松动引起的紧固件松动

由于紧固件本身或连接件在组装后变形,可能发生非旋转松动。这是这些界面的部分塑性坍塌的结果。

表面粗糙接触放大显示

当两个表面相互接触时,每个表面承受支撑面载荷。因为实际接触面积远远小于表面面积,即使在中等载荷下,也要持续承受非常高的局部应力,该应力大于材料的屈服强度。

这会导致紧固操作完成后表面部分塌陷吗,这种塌陷通常被称为嵌入。

由于嵌入而损失的夹紧力的量取决于螺栓和连接件的刚度、连接中存在的接触面数量、表面粗糙度和所施加的支撑面应力。

在中等的表面应力条件下,在接头拧紧后前几秒钟,嵌入通常会导致约1% 至5% 的夹紧力损失。当接头随后受到施加的动态载荷时,由于接头接触面上发生的压力变化,夹紧力可能会发生进一步的减小

如果表面承载应力保持在连接件材料的压缩屈服强度以下,则可以计算出嵌入损失的量,并且在连接设计中去补偿该损失量。

Junker的紧固件自松理论

1969年Gerhard Junker通过了工程测试的结果来支持他关于螺纹紧固件为什么会自动松动的理论。他的关键发现是,一旦在配合螺纹之间以及紧固件的支撑表面和夹紧材料之间发生相对运动,预加载紧固件就会由于旋转而松动。

同时还发现横向动态载荷比轴向动态载荷产生更严重的松动。其原因是轴向载荷下的径向移动明显小于横向载荷下的径向移动。

螺栓连接的横向运动

Junker表明,当配合螺纹和紧固件支撑面之间发生相对运动时,预加载紧固件就会自松。当作用在接头上的横向力大于螺栓预紧力产生的摩擦力时,就会发生这种情况。

对于较小的横向位移,螺纹侧面和支撑接触面之间可能发生相对运动,一旦螺纹间隙被克服,螺栓将受到弯曲力的影响,如果横向滑动持续,螺栓头下支撑面滑动将会发生。

一旦开始,螺纹处和螺栓头下将暂时没有摩擦。由于预紧力作用在螺纹螺旋角上而产生的自松扭矩,使得螺母和螺栓之间产生了对应的旋转。在反复的横向运动下,该机制可以引起紧固件完全松开。

为了研究松动的原因,Junker开发了一种测试机器,如下图所示,它将量化紧固件设计的抗松动有效性。

Junker紧固件试验机

滚珠轴承用于消除移动和固定板之间的摩擦影响。当从夹紧螺母的移动板施加横向运动时,称重传感器会连续监测螺栓载荷。

与普通振动测试标准相比,可以在测试期间测量预载的损失,并绘制预载与循环周期的图表。

Junker机器的原理是由凸轮产生的横向位移导致紧固件的摇摆,以克服紧固件的摩擦力而产生松脱。

Junker测试机截图

Junker振动测试松动曲线

通过Junker测试,可以比较各种紧固件防松设计的性能。在过去的二十年里,已经完成了大量的现有的紧固件防松设计研究,对它们的抗松动性进行了比较。

为了进行有效的比较,使用相同的振动振幅是至关重要的,因为这对结果有很大影响。下图显示了一个典型的弹簧垫圈测试结果。

在测试中显示在螺栓头下放置一个螺旋弹簧垫圈,反而以加速了松动。也有其他人证明,使用这种垫圈与使用没有任何锁紧装置的螺栓具有相似的性能。

许多大型OEM意识到这些发现,已经不再在内部标准中指定此类垫圈。

许多用于螺纹紧固件的锁紧装置是基于防止螺纹之间的相对运动 (例如尼龙锁紧螺母) 或支撑面和连接件的相对运动 (例如各种类型的 “锁定” 垫圈)。

然而,Junker和其他后来的研究人员都指出了防止接头横向运动的重要性是,合适的螺栓连接设计,使得螺栓的夹紧力足够,通过连接板的摩擦防止横向运动,这样才不会松动。

在设计阶段,可通过选择合适紧固件尺寸和强度来实现,以便预紧力可以产生足够的摩擦力,以抵抗外部载荷引起的接头移动。

螺丝君结论

螺纹紧固件松动最根本的原因是接头的移动,特别是螺栓螺纹和支撑面的横向滑动。如果可以从螺栓上获得足够的预紧力以防止接头移动,则不需要锁紧装置,因为摩擦会将零件固定在一起。

螺纹紧固件设计的主要问题是,当包括摩擦条件的变化时,能确保预紧力足以将零件牢固地固定在一起。

该图表显示了摩擦变化对螺栓预紧力的影响。

防止松动的关键是提供足够的螺栓预紧力

通常,应根据最大摩擦系数下产生的最小预紧力来设计接头,使用预紧力平均值进行设计将导致许多螺栓松动。

同时还需要考虑嵌入造成的预紧力损失,为了保持嵌入量的限制,需要确保被夹紧材料可承受的最大应力范围。

在无法防止接头移动的情况下,例如,在热膨胀的存在,则应指定具有已证明能力的锁紧装置。

进紧固连接装配

5000+行业社群

2022 年 9 月 6-7-8 日

上海汽车会展中心

轨道交通紧固连接装配技术论坛

01

初步议题

01 机车车辆螺栓连接设计规范及紧固件选型

为规范机车车辆螺栓连接的设计,国家铁路局特发布了新版的TB/T3246-2019《机车车辆螺栓连接设计准则》,规定了机车车辆用螺栓连接的分类、应用、安全、防腐蚀保护、连接尺寸及安装要求等相关内容。此外,还涉及螺栓选型、弹\平垫的选择、螺纹润滑\锁固、表面涂覆要求、拧紧控制方式、防松措施等相关内容。 02 转向架及车载设备的螺栓装配工艺及质量管控

轨道车辆转向架及重要车载设备的螺栓连接为高风险等级,螺栓连接发生故障失效时,可能导致车辆运行危险或危及人身安全,因此对其装配工艺及装配质量要求非常严格。包括装配工艺的制定和流程确认、拧紧工具选型及拧紧工艺的控制以及拧紧设置及拧紧质量改善等。 03 高速列车螺栓防松技术及应用

高速列车的长期高速运行,给螺栓连接的设计和装配带来极大挑战。人们常说的“十断九松”,表明螺栓断裂的主要原因在于螺栓松动,因此螺栓防松技术是螺栓连接的一项重点技术。防松紧固件及防松技术在高速列车中得到广泛应用,不同防松紧固件和防松技术的效果和适用范围也有所差异,如何依据具体结构和使用环境选择恰当的防松紧固件、采用恰当的防松措施值得工程师们交流对比。 Workshop:圆桌论坛:轨道交通行业典型螺栓失效案例讨论

在螺栓连接技术日益成熟的今天,螺栓连接的失效事故仍时有发生。事故的原因可能属于质量问题、可能是工艺问题、也可能是设计问题。对于螺栓典型失效案例的讨论和解读有助于从中吸取教训,总结经验,在今后的设计和装配过程中给予关注,设法规避。 05 螺栓连接失效的断口分析及故障诊断

失效螺栓的断口蕴藏着丰富的故障信息,通过对断口的分析可以对螺栓连接失效的根源进行有效解读,还原螺栓在事故发生前的受力状态,对破坏类型、螺栓性能、预紧状态及负载大小,为故障原因的诊断提供直接证据和结构优化方向。 06 螺栓连接安全的评估指标和验证方法

螺栓连接的安全性评估是保证螺栓连接在整个服役期间安全可靠的前提条件。设计之初,充分考虑其整个生命周期中的受力状态,通过理论计算或有限元分析对螺栓连接的各项指标进行定量评估,以判断螺栓连接的安全性,识别潜在风险。 07 轨道交通行业特有的螺栓接头形式和需求

除常规的螺栓接头形式外,轨道交通行业中还大量应用特殊接头形式,譬如高速列车中应用的铝型材C型梁与T型螺栓的紧固组合、金属套筒的使用等。针对特殊接头的结构设计、拧紧工艺及计算/试验验证也是一个新的技术增长点。此外,受修程修制的影响,在使用过程中大批量的紧固件需要多次更换,造成极大的浪费。在全球节能减排背景下,如何在确保安全可靠的前提下,紧固件重复使用问题值得深入探讨。 08 螺栓连接设计、装配及运用中的试验研究

试验研究是螺栓接头设计、装配及运行维护过程中不可或缺的技术手段。既包括设计参数的获取,譬如对螺纹副摩擦系数、承压区摩擦系数以及连接件分界面摩擦系数的测量;也包括拧紧过程中的工艺参数选择及拧紧效果的验证;还包括运行维护过程中螺栓轴向力即时测量及螺栓状态的在线健康监测等等。

THE END
0.断口分析断口分析 /fractographic analysis/ 条目作者廖乾初 最后更新2023-11-14 浏览413次 0意见反馈一键引用 用肉眼或借助于光学显微镜和电子显微镜观察材料断裂表面的特征,确定断裂性质,分析断裂原因,研究断裂机理,为改进材料提出依据的分析方法。 英文名称 fractographic analysisjvzquC41yy}/|pgm0eun1nhrj1}ptmxAUkzfKMB3(KJ>8;9;5
1.某车型悬置支架紧固件松动分析及装配正向设计二、宏观断口分析 分别对各部位断裂情况进行观察,悬置支架断口位于与衬套连接的过渡薄弱区。其中近焊接螺母处为先失效断口,断面肉眼可见圆弧形贝纹线,具有典型疲劳断裂特征;贝纹线收敛于表面焊点,视为疲劳源区,源区位置与焊点受热影响具有一定的关联性(图4a); 贝纹线扩展面积较大,几乎贯穿整个截面,说明疲劳裂纹从萌生到扩展期间零部件受力并不大,jvzquC41yy}/fxsiejkek7hqo1gsvrhng1=27?<:23;26;:4:8<72
2.断口图像分析仪品牌:馥勒馥勒断口图像分析仪用显微镜头、摄相机、采集卡,自动获取冲击试样断口的图片。馥勒全自动断口图像分析仪能够完成动态撕裂及落锤动态撕裂实验中的断口分析测量,同时也可以进行冲击试样断面纤维率和侧膨胀值的测试以及断裂韧度试样中裂纹长度等项目的测试、测量冲击断口侧膨胀值、冲击断口断面纤维率、DWTT断口断面纤维率、DT断jvzquC41ejooc7lwkfkdjnr0eqs0v{ffg1veg}fkn3>4498:40nuou
3.不锈钢水箱焊缝腐蚀分析青岛金属检测机构焊接工艺评定从样品A及样品E上取样进行焊缝宏微观金相分析,检测结果见图7-图12。由检测结果可知,样品A 和样品E焊缝及热影响区组织基本一致,焊缝组织为奥氏体+铁素体,铁素体含量约为40%,热影响区也出现较多铁素体,离熔合线越近铁素体含量越高。 7. 断口形貌分析,微区成分分析: jvzquC41yy}/sm~kpizf0lto1egtg8Kckn{sg6fpcntk|2ecuk05?3jvor
4.高端汽车用7003T6铝合金高温性能研究冲压帮2.2 断口分析 图5为7003-T6合金在不同温度下的拉伸断口形貌。由图5可知,不同拉伸温度下,试样断口形貌存在较大差异。室温下,拉伸断口韧窝尺寸小且密集,深度较浅,韧窝内部均匀分布细小的第二相,没有观察到滑移条带。随拉伸温度的升高,韧窝尺寸不断增大,深度逐渐增加。从图5中还可以看出,室温到100 ℃范围内韧窝深jvzquC41yy}/uqfpi{kykwjk0ipo8ftvkimg8>:;87:97mvon
5.南京航空航天大学顾冬冬教授团队与“钨”的不解情缘5-6 断口分析 E=667J/mm^3打印样品断口 当能量密度为667J/mm^3时,可以清楚地看到样品内部存在大量孔洞。气孔和未熔化的颗粒是早期断裂的主要原因,说明施加的能量密度不足以完全熔化粉末颗粒,导致颗粒之间的结合较弱。 E=833J/mm^3打印样品断口 当能量密度增加到833J/mm^3时,样品变得致密,孔洞减少,未熔化的jvzquC41yy}/uqnhckx/exr1kplptvfvkqtEg}fknu524>960jznn
6.力学性能范文本文对中低碳钢管经过渗氢处理不同时间后屈服强度、抗拉强度、冲击韧性及断面收缩率等力学性能的变化、氢脆断口分析等进行了分析。 2试验材料和方法 试验材料为抗硫化氢腐蚀低碳低合金钢管,管材规格为φ177.8×12.65mm。渗氢试验环境为:NACE TM0177-2005标准A溶液(5%NaCl+0.5%CH3COOH+蒸馏水),溶液用高纯氮气充分除氧后jvzquC41yy}/i€~qq0ipo8mcqyko1;9;254ivvq
7.人工心瓣用热解炭断裂韧性研究及断口形貌分析期刊人工心瓣用热解炭断裂韧性研究及断口形貌分析 张建辉 阮叶鹏 孙振国 杭州电子科技大学机械工程学院,杭州 310018 在线阅读 HTML阅读 下载 引用 收藏 分享 打印 摘要:人工心瓣中常用材料主要是包覆在石墨基体上的热解炭.为研究人工心瓣用热解炭材料断裂韧性,采用MTS电动力学测试系统,对石墨、纯热解炭及不同厚度热解炭jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1|iyx{lezd81495323<
8.聚醚胺对环氧树脂体系拉伸性能的影响(4)示差扫描量热分析表明:聚醚胺具有降低体系Tg的作用.说明体系在低温也能具有一定的柔韧性,发掘了环氧树脂体系在低温环境下的应用前景。 (5)室温下拉伸断裂曲线和拉伸断裂的断口SEM形貌分析得出,聚醚胺和羟基聚醚对环氧树脂体系的改性机理不同。前者起到了增柔作用,后者起到增韧作用。图像反映环氧树脂/聚醚胺体系呈jvzq<84yyy4gtyfrr0ipo8}wg{{bp87236721:9145<60qyon