认证主体:李**(实名认证)
IP属地:湖北
下载本文档
1、分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物
2、分子的结构、转变与新陈代谢。传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。分子生物学则着重阐明生命的本质-主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层
3、次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。第一章序论1859年发表了物种起源,用事实证明“物竞天择,适者生存”的进化论思想。指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。达尔文第一个认识到生物世界的不连续性。意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。经典遗传学两条基本规律:统一律:当两种不同植物杂交时,它们的下一代
4、可能与亲本之一完全相同; 分离规律:将不同植物品种杂交后的F1代种子再进行杂交或自交时,下一代就会按照一定的比例分离,因而具有不同的形式。1865年发表植物杂交试验,直到1900年才被人们重新发现。孟德尔被公认为经典遗传学的奠基人。现代遗传学Morgan及其助手第一次将代表某一特性的基因同染色体联系起来,使科学界普遍认识了染色体的重要性并接受了孟德尔的遗传学原理。Morgan特别指出:种质必须由某些独立的要素组成,我们把这些要素称为遗传因子或基因。第二节 分子生物学发展简史准备和酝酿阶段(19世纪后期到20世纪50年代初)对生命本质的认识上的两点重大突破:1确定了蛋白质是生命的主要基础物质2确
5、定了生物遗传的物质基础是DNA现代分子生物学的建立和发展阶段(20世纪50年代初到70年代初)这一阶段以1953年Watson和Crick提出的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑开创了分子遗传学基本理论建立和发展的黄金时代。在此期间的主要进展包括:遗传信息传递中心法则的建立对蛋白质结构与功能的进一步认识DNA双螺旋发现的意义:确立了核酸作为信息分子的结构基础;提出了碱基配对是核酸复制、遗传信息传递的基本方式;从而最后确定了核酸是遗传的物质基础,为认识核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。Crick于1954年所提出遗传信息传递的中心法则(Central Dog
6、ma ):初步认识生命本质并开始改造生命的深入发展阶段(20世纪70年代后至今) 基因工程技术的出现作为标志。其间的重大成就包括:重组DNA技术的建立和发展基因组研究的发展单克隆抗体及基因工程抗体的建立和发展基因表达调控机理细胞信号转导机理研究成为新的前沿领域第三节 分子生物学的主要研究内容一DNA重组技术(recombinant DNA technology)定义:又称为基因工程,根据分子生物学和遗传学的原理,将一种生物的遗传物质DNA转移到另一生物体中,使后者获得新的遗传性状或表达出所需要的产物。DNA重组技术的应用:利用微生物基因工程生产重组基因工程药物转基因植物和动物体细胞克隆基因表达
7、与调控的基础研究二生物大分子的结构功能研究三基因组、功能基因组与生物信息学的研究基因组、蛋白质组与生物信息学基因组(Genome):细胞或生物体一条完整单体的全部染色体遗传物质的总和。 人类基因组计划(Human Genome Project, HGP): 测定出人基因组全部DNA3109硷基对的序列、确定人类约5-10万个基因的一级结构 。基因组、蛋白质组与生物信息学蛋白组计划(Proteome project):又称为后基因组计划或功能基因组计划,用于揭示并阐明细胞、组织乃至整个生物个体全部蛋白质及其功能。生物信息学(Bioinformatics):是在生命科学的研究中,以计算机为工具对生
8、物信息进行储存、检索和分析的科学。四基因表达调控研究第二章 染色体与DNA本章内容1. 染色体2. DNA的结构3. DNA的复制4. 原核生物和真核生物DNA复制特点5. DNA的修复6. DNA的转座第一节 染色体(chromosome)概念:染色体(chromosome):原指真核生物细胞分裂中期具有一定形态特征的染色质。现在这一概念已扩大为包括原核生物及细胞器在内的基因载体的总称。染色质(chromatin):由DNA和蛋白质构成,在分裂间期染色体结构疏松,称为染色质。其实染色质与染色体只是同一物质在不同细胞周期的表现。常染色质(euchromatin):是进行活跃转录的部位,呈疏松的
9、环状,电镜下表现为浅染,易被核酸酶在一些敏感的位点(hypersensitive sites)降解。异染色质(heterochromatin):在间期核中处于凝缩状态,无转录活性,也叫非活动染色质(inactive chromatin),是遗传惰性区。在细胞周期中表现为晚复制,早凝缩,即异固缩现象(heteropycnosis)。原核细胞与真核细胞特征分析染色体特性:分子结构相对稳定能够自我复制,使亲、子代之间保持连续性能够指导蛋白质的合成,从而控制整个生命过程能够产生可遗传的变异真核细胞染色体的组成DNA 30%-40%组蛋白(histone) 30%-40%非组蛋白(NHP) 变化很大少量
10、RNA染色体中的蛋白质组蛋白(histone):一类小的带有丰富正电荷(富含Lys、Arg)的核蛋白,与DNA有高亲和力。组蛋白是染色体的结构蛋白,它与DNA组成核小体。 组蛋白分为H1、H2A、H2B、H3及H4。非组蛋白(non-histone protein):是染色体上与特异DNA序列结合的蛋白质,所以又称为序列特异性DNA结合蛋白。组蛋白具有如下特性:1、进化上的极端保守性。2、 无组织特异性。3、肽链上氨基酸分布的不对称性。4、组蛋白的修饰作用。5、富含赖氨酸的组蛋白H5。非组蛋白:非组蛋白大约占组蛋白总量的6070%,种类很多。(1)HMG蛋白(high mobility gro
11、up protein) ,能与DNA结合(不牢固),也能与H1作用,可能与DNA的超螺旋结构有关。(2)DNA结合蛋白 :可能是一些与DNA的复制或转录有关的酶或调节物质。(3)A24非组蛋白 :与H2A差不多,位于核小体内,功能不祥。非组蛋白的一般特性:1.非组蛋白的多样性;非组蛋白的量大约是组蛋白的60%70%,但它的种类却很多,约在20-100种之间,其中常见的有15-20种。2.非组蛋白的组织专一性和种属专一性。DNAC值:通常指一种生物单倍体基因组DNA的总量。C值反常现象:真核细胞基因组的最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就
12、是著名的“C值反常现象”。染色体中的DNA根据DNA的动力学研究,真核细胞DNA可分为:高度重复序列:几百几万 copy。如:卫星DNA和微卫星DNA。中度重复序列:10 几百 copy。如:各种rDNA、tDNA及组蛋白基因。 低度重复序列:2 10 copy。如:血红蛋白。单拷贝序列:大多数编码蛋白质的结构基因和基因间间隔序列。只有一个拷贝。如:蛋清蛋白。染色体折叠DNA核小体螺线管圆筒超螺旋(1)核小体染色质纤维细丝是许多核小体连成的念珠状结构。核小体(nucleosome):DNA绕在组蛋白八聚体(H2A、H2B、H3、H4各一对)核心外1.8周(146bp),形成核小体核心颗粒。(2
13、)螺线管10nm的染色质细丝盘绕成螺旋管状的30nm纤维粗丝,通称螺线管(solenoid)。螺线管的每一螺旋包含6个核小体,其压缩比为6。这种螺线管是分裂间期染色质和分裂中期染色体的基本组分。(3)上述螺线管可进一步压缩形成超螺旋。由30nm螺线管缠绕而成一细长、中空的圆筒,直径为4 000nm,压缩比是40。(4)超螺旋进一步压缩1/5便成为染色体单体,总压缩比是7×6×40×5,将近一万倍。原核生物基因组特点:1、结构简练2、存在转录单元 多顺反子mRNA3、有重叠基因Sanger1977在Nature上发表了X174 DNA的全部核苷酸序列,正式发现了重叠
14、基因。第二节 DNA的结构一、DNA的一级结构所谓DNA的一级结构,就是指4种核苷酸的连接及其排列顺序,表示了该DNA分子的化学构成。基本特点DNA分子是由两条互相平行的脱氧核苷酸长链盘绕而成的。DNA分子中的脱氧核糖和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在内侧。两条链上的碱基通过氢键相结合,形成碱基对,它的组成有一定的规律。这就是嘌呤与嘧啶配对,而且腺嘌呤(A)只能与胸腺嘧啶(T)配对,鸟嘌呤(G)只能与胞嘧啶(C)配对。2、DNA的二级结构DNA的二级结构是指两条多核苷酸链反向平行盘绕所生成的双螺旋结构。通常情况下,DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DN
15、A;另一类是左手螺旋,即Z-DNA。3、DNA的高级结构DNA的高级结构是指DNA双螺旋进一步扭曲盘绕所形成的特定空间结构。超螺旋结构是DNA高级结构的主要形式,可分为正超螺旋与负超螺旋两大类。 DNA分子的超螺旋化可以用一个数学公式来表示:L=T+W其中L为连接数(linking number),是指环形DNA分子两条链间交叉的次数。只要不发生链的断裂,L是个常量。T为双螺旋的盘绕数(twisting number),W为超螺旋数(writhing number),它们是变量。23DNA的复制一、DNA的复制1、DNA的半保留复制每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以
16、这种复制方式被称为DNA的半保留复制(semiconservative replication)。DNA的这种半保留复制保证了DNA在代谢上的稳定性。2、复制的起点与方向一般把生物体的复制单位称为复制子(replicon)。一个复制子只含一个复制起点。多复制子:DNA复制时,原核生物一般只有一个起始位点,而真核生物则有多个起始位点,因而在复制时呈现多复制泡,也称为多复制子。DNA的复制主要是从固定的起始点以双向等速复制方式进行的(图2-18)。复制叉以DNA分子上某一特定顺序为起点,向两个方向等速生长前进。 拓扑异构酶I拓扑异构酶I解开负超螺旋,并与解链酶共同作用,在复制起点处解开双链。参与解
17、链的除一组解链酶外,还有Dna蛋白等。DNA解链酶(DNA helicase)DNA解链酶能通过水解ATP获得能量来解开双链DNA。单链结合蛋白(SSB蛋白 )SSB蛋白的作用是保证被解链酶解开的单链在复制完成前能保持单链结构,它以四聚体形式存在于复制叉处,待单链复制后才掉下,重新循环。所以,SSB蛋白只保持单链的存在,并不能起解链的作用。3、DNA的半不连续复制 与冈崎片段DNA复制时,短时间内合成的约1000个核苷酸左右的小片段,称之为冈崎片段(Okazaki fragment)DNA复制过程中至少有一条链首先合成较短的片段,然后再由连接酶连成大分子DNA。现在已知一般原核生物的冈崎片段要
18、长些,真核生物中的要短些。进一步研究还证明,这种前导链的连续复制和滞后链的不连续复制在生物界是有普遍性的,因而称之为双螺旋的半不连续复制。DNA链的延伸:DNA复制体(replisome):在复制叉附近,形成了以两套DNA聚合酶全酶分子、引发体和解链酶构成的类似核糖体大小的复合体,称为DNA复制体。4、滞后链的引发DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由DNA聚合酶从RNA引物3' 端开始合成新的DNA链。滞后链的引发过程往往由引发体(primosome)来完成。引发体由6种蛋白质n、n'、n''、Dna B、C和I共同组成,只有
19、当引发前体(preprimosome)把这6种蛋白质合在一起并与引发酶(primase)进一步组装后形成引发体,才能发挥其功效。5、链的终止当复制叉前移,遇到20bp重复性终止子序列(Ter)时,Ter-Tus复合物能阻挡复制叉的继续前移,等到相反方向的复制叉到达后在DNA拓扑异构酶IV的作用下使复制叉解体,释放子链DNA。6、复制的几种方式(1)环状DNA双链的复制环状双链DNA的复制可分为型、滚环型和D-环型几种类型。 (a) 型复制的起始点涉及到DNA双链的解旋和松开,形成两个方向相反的复制叉 。前导链DNA开始复制前,复制原点的核酸序列被转录生成短RNA链,作为起始DNA复制的引物。(
20、b) 滚环型(rolling circle)这是单向复制的特殊方式。如X174的双链环状DNA复制型(RF)就是以这种方式复制的。DNA的合成由对正链原点的专一性切割开始,所形成的自由5 端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,使其3OH端在DNA聚合酶的作用下不断延伸。在这个过程中,单链尾巴的延伸与双链DNA的绕轴旋转同步 。(c) D-环型(D-loop)这也是一种单向复制的特殊方式。这种方式首先在动物线粒体DNA的复制中被发现。双链环在固定点解开进行复制。但两条链的合成是高度不对称的,一条链上迅速合成出互补链,另一条链则成为游离的单链环(即D-环)。(2)线性DNA双链的复制
21、线性DNA复制中RNA引物被切除后,留下5'端部分单链DNA,不能为DNA聚合酶所作用,使子链短于母链。T4和T7噬菌体DNA通过其末端的简并性使不同链的3'端因互补而结合,其缺口被聚合酶作用填满,再经DNA连接酶作用生成二联体。这个过程可重复进行直到生成原长20多倍的多联体,并由噬菌体DNA编码的核酸酶特异切割形成单位长度的DNA分子。二、原核和真核生物DNA的复制特点1、原核生物DNA的复制特点大肠杆菌DNA聚合酶I、II和III的性质比较原核生物的DNA聚合酶DNA聚合酶:有35外切酶活性和53外切酶活性。保证DNA复制的准确性。DNA聚合酶 :活性低,其35核酸外切酶活
22、性可起校正作用。主要起修复DNA的作用。DNA聚合酶:7种亚单位9个亚基。只具35外切酶活性,主导聚合酶。 Klenow fragment:用枯草杆菌蛋白酶处理大肠杆菌DNA聚合酶,获得两个片段,大片段分子量76000U,称为Klenow 片段。它保留着聚合酶和35外切酶的活性,广泛使用于DNA序列分析中。三、真核生物DNA的复制特点真核生物DNA复制的起始需要起始原点识别复合物(ORC)参与。真核生物DNA复制叉的移动速度大约只有50bp/秒,还不到大肠杆菌的1/20。 真核生物的染色体在全部完成复制之前,各个起始点上DNA的复制不能再开始。 真核生物DNA聚合酶的特性比较原核细胞DNA的复
23、制调控:复制叉的多少决定了复制频率的高低。真核细胞DNA的复制调控:1.细胞生活周期水平调控2.染色体水平调控3.复制子水平调控真核和原核生物DNA复制的比较相同:1.半保留复制2.都有引发、延长、终止三个阶段3.都必须有相应功能的蛋白质和DNA聚合酶参与区别:1.真:多个复制起始点;原:一个复制起始点2.真:所有复制受一种调控;原:一个复制子上有多个复制叉2.5 DNA的修复DNA修复系统 功能错配修复 恢复错配碱基切除修复 切除突变的碱基核苷酸切除修复 修复被破坏的DNADNA直接修复 修复嘧啶二体或甲基化DNA2.6 DNA的转座移动基因(Movable gene):又称为转位因子(Tr
24、ansposable elements),是存在于染色体DNA上可自主复制和位移的基本单位。由于它可以从染色体基因组上的一个位置转移到另一位置,甚至在不同染色体之间跃迁,因此有时也称为跳跃基因(Jumping gene)。原核生物的转座因子可分为:插入序列(insertion sequence,IS):最简单的不含有任何宿主基因的转位因子。片段长度7002500bp。复合转座子(transposon,Tn):是一类携带某些与转座无关的抗性基因(或其它宿主基因)的转座子。分子量2000bp。转座噬菌体(Mu,D108):具有转座功能的一类可引起突变的溶源性噬菌体。 插入序列的结构特点:1.在IS
26、 是转座过程的中间体 (具有两个 Tn 和两个 replicon), 其稳定性依 Tn不同而异,或 resolution 完成转座过程.e) Cointegrater 可能导致 Tn 和抗性的积累。转座作用的遗传学效应1. 诱变效应 (提高重组频率、形成易变基因)2. 切除效应 (倒位、缺失、重复、footprinting)3. 双转座效应(外显子改组 exon shuffling )4. 位置效应(启动表达、增强表达)5. 转座爆炸(激活表达、基因内重排突变基因形成)转位作用的机制:靶序列的复制。转位作用的遗传学效应:引起插入突变;产生新基因;产生染色体畸变;引起生物进化。转座因子的应用:利
29、,从而将DNA中的遗传信息转移到RNA中去的过程称为转录。编码链(coding strand)=有意义链模板链(template strand)=反义链不对称转录(asymmetric transcription):转录仅发生在DNA的一条链上。 启动子(promoter):是DNA转录起始信号的一段序列,它能指导全酶与模板正确的结合,并活化酶使之具有起始特异性转录形式。终止子(terminator):转录终止的信号,其作用是在DNA模板特异位置处终止RNA的合成。转录单位:DNA链上从启动子直到终止子为止的长度称为一个转录单位。3.1 RNA的转录转录的基本过程都包括:模板识别、转录起始、通
30、过启动子及转录的延伸和终止。1、模板识别阶段主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程。转录起始前,启动子附近的DNA双链分开形成转录泡以促使底物核糖核苷酸与模板DNA的碱基配对。2、转录起始就是RNA链上第一个核苷酸键的产生。3、转录起始后直到形成9个核苷酸短链是通过启动子阶段,通过启动子的时间越短,该基因转录起始的频率也越高。4、RNA聚合酶离开启动子,沿DNA链移动并使新生RNA链不断伸长的过程就是转录的延伸。5、当RNA链延伸到转录终止位点时,RNA聚合酶不再形成新的磷酸二酯键,RNA-DNA杂合物分离,这就是转录的终止。RNA合成的基本特点:1.底物是:ATP、G
32、A聚合酶的组成是相同的,大肠杆菌RNA聚合酶由2个亚基、一个亚基、一个亚基和一个亚基组成,称为核心酶。加上一个亚基后则成为聚合酶全酶(holoenzyme),相对分子质量为4.65×105。研究发现,由和亚基组成了聚合酶的催化中心,它们在序列上与真核生物RNA聚合酶的两个大亚基有同源性。亚基能与模板DNA、新生RNA链及核苷酸底物相结合。因子可以极大地提高RNA聚合酶对启动子区DNA序列的亲和力,加入因子7以后,RNA聚合酶全酶识别启动子序列的特异性总共提高了10倍。因子的作用是负责模板链的选择和转录的起始,转录的起始从化学过程来看是单个核苷酸与开链启动子-酶复合物相结合构成新生RN
33、A的5端,再以磷酸二酯键的形式与第二个核苷酸相结合,起始的终止反映在因子的释放。过去认为二核苷酸的形成就是转录起始的终止,实际上,只有当新生RNA链达到6-9个核苷酸时才能形成稳定的酶-DNA-RNA三元复合物,才释放因子,转录进入延伸期。真核生物RNA聚合酶真核生物中共有3类RNA聚合酶。真核生物RNA聚合酶一般有8-14个亚基所组成,相对分子质量超过5×105。除了细胞核中的RNA聚合酶之外,真核生物线粒体和叶绿体中还存在着不同的RNA聚合酶。线粒体RNA聚合酶只有一条多肽链,相对分子质量小于7×104,是已知最小的RNA聚合酶之一,与T7噬菌体RNA聚合酶有同源性。叶
34、绿体RNA聚合酶比较大,结构上与细菌中的聚合酶相似,由多个亚基组成,部分亚基由叶绿体基因组编码。线粒体和叶绿体RNA聚合酶活性不受-鹅膏覃碱所抑制。常用的转录抑制剂及其作用:抑制剂 靶酶 抑制作用利福霉素 细菌的全酶 与亚基结合,阻止起始 链霉溶菌素 细菌的核心酶 与亚基结合,阻止延长 放线菌素D 真核RNA聚合酶 与DNA结合,并阻止延长-鹅膏蕈碱 真核RNA聚合酶 与RNA聚合酶结合起始复合物的形成转录可被分为4个阶段,即启动子的选择、转录起始、RNA链的延伸和终止。 原核生物中:启动子选择阶段包括RNA聚合酶全酶对启动子的识别,聚合酶与启动子可逆性结合形成封闭复合物(closed com
35、plex)。真核生物RNA聚合酶所形成的转录起始复合物:除了RNA聚合酶之外,真核生物转录起始过程中至少还需要7种辅助因子参与一般情况下,该复合物可以进入两条不同的反应途径,一是合成并释放2-9个核苷酸的短RNA转录物,即所谓的流产式起始;二是尽快释放亚基,转录起始复合物通过上游启动子区并生成由核心酶、DNA和新生RNA所组成的转录延伸复合物。RNA聚合酶的核心酶虽可合成RNA,但不能找到模板DNA上的起始位点。只有带因子的全酶才能专一地与DNA上的启动子结合,选择其中一条链作为模板,合成均一的产物。因子的作用只是起始而已,一旦转录开始,它就脱离了起始复合物,而由核心酶负责RNA链的延伸。因此
36、,聚合酶全酶的作用是启动子的选择和转录的起始,而核心酶的作用是链的延伸。真核生物RNA Pol II的转录起始复合物真核生物转录起始除RNA聚合酶外,至少还需要7种辅助因子参与,如TBP,TFIIA,TFIIB,TFIID,TFIIE,TFIIF和TFIIH。3.2 启动子与转录起始2、启动子与转录起始启动子是一段位于结构基因5端上游区的DNA序列,能活化RNA聚合酶,使之与范本DNA准确地相结合并具有转录起始的特异性。转录的起始是基因表达的关键阶段,而这一阶段的重要问题是RNA聚合酶与启动子的相互作用。转录单元(transcription unit):是一段从启动子开始至终止子结束的DNA序
37、列,RNA聚合酶从转录起点开始沿着模板前进,直到终止子为止,转录出一条RNA链。转录起点是指与新生RNA链第一个核苷酸相对应DNA链上的碱基,研究证实通常为一个嘌呤。常把起点前面,即5末端的序列称为上游(upstream),而把其后面即3末端的序列称为下游(downstream)。在启动子区内有一个由5个核苷酸组成的共同序列,是RNA聚合酶的紧密结合点,现在称为Pribnow区(Pribnow box),这个区的中央大约位于起点上游10bp处,所以又称为-10区。绝大部分启动子都存在位于-10bp处的TATA区和-35bp处的TTGACA区。这两段共同序列是RNA聚合酶与启动子的结合位点,能与
38、因子相互识别而具有很高的亲和力。Pribnow区(Pribnow box)这个区的中央大约位于起点上游10bp处,所以又称为10区。TTGACA。这个区的中央大约位于起点上游35bp处,所以又称为35区。10位的TATA区和35位的TTGACA区是RNA聚合酶与启动子的结合位点,能与因子相互识别而具有很高的亲和力。在真核生物基因中,Hogness等先在珠蛋白基因中发现了类似Pribnow区的Hogness区(Hogness box),这是位于转录起始点上游2530 bp处的共同序列TATAAA,也称为TATA区(图3-7)。另外,在起始位点上游7078 bp处还有另一段共同序列CCAAT,这是
39、与原核生物中35 bp区相对应的序列,称为CAAT区(CAAT box)。在7080区含有CCAAT序列(CAAT box),在80110含有GCCACACCC或GGGCGGG序列(GC box)。氢键互补学说:RNA聚合酶并不直接识别碱基对本身,而是通过氢键互补的方式加以识别。这种氢键互补学说较为圆满地解释了启动子功能既受DNA序列影响,又受其构象影响这一事实。在RNA聚合酶与启动子相互作用的过程中,聚合酶首先与启动子区闭合双链DNA相结合,形成二元闭合复合物,然后经过解链得到二元开链复合物。 DNA开链是按照DNA模板序列正确引入核苷酸底物的必要条件。RNA聚合酶既是双链DNA结合蛋白,又
40、是单链DNA结合蛋白。在原核生物中,-35区与-10区之间的距离大约是1619bp,小于15bp或大于20bp都会降低启动子的活性。在细菌中常见两种启动子突变,一种叫下降突变(down mutation),如果把Pribnow区从TATAAT变成AATAAT就会大大降低其结构基因的转录水平;另一类突变叫上升突变(up mutation),即增加Pribnow区共同序列的同一性。能强化转录起始的序列为增强子或强化子(enhancer)。增强子很可能通过影响染色质DNA-蛋白质结构或改变超螺旋的密度而改变模板的整体结构,从而使得RNA聚合酶更容易与范本DNA相结合,起始基因转录。 增强子与启动子的
41、区别:1.增强子对于启动子的位置不固定,而能有很大的变动;2.它能在两个方向产生作用。一个增强子并不限于促进某一特殊启动子的转录,它能刺激在它附近的任一启动子。习惯上,将TATA区上游的保守序列称为上游启动子元件(upstream promoter element,UPE)或称上游激活序列(upstream activating sequence,UAS)。 在真核生物基因中,Hogness等先在珠蛋白基因中发现了类似Pribnow区的Hogness区(Hogness box),这是位于转录起始点上游2530 bp处的共同序列TATAAA,也称为TATA区。另外,在起始位点上游7078 bp处
42、还有另一段共同序列CCAAT,这是与原核生物中35 bp区相对应的序列,称为CAAT区(CAAT box)。在7080区含有CCAAT序列(CAAT box),在80110含有GCCACACCC或GGGCGGG序列(GC box)。TATA区的主要作用是使转录精确地起始;CAAT区和GC区主要控制转录起始频率,基本不参与起始位点的确定。转录实际上是RNA聚合酶、转录调控因子和启动子区各种调控元件相互作用的结果。转录的终止RNA聚合酶起始基因转录后,它就会沿着范本53方向不停地移动,合成RNA链,直到碰上终止信号时才与模板DNA相脱离并释放新生RNA链。终止发生时,所有参与形成RNA-DNA杂合
43、体的氢键都必须被破坏,范本DNA链才能与有意义链重新组合成DNA双链。3.4 终止和抗终止不依赖于因子的终止终止位点上游一般存在一个富含GC碱基的二重对称区,由这段DNA转录产生的RNA容易形成发卡式结构。在终止位点前面有一段由4-8个A组成的序列,所以转录产物的3端为寡聚U,这种结构特征的存在决定了转录的终止。终止效率与二重对称序列和寡聚U的长短有关,随着发卡式结构(至少6bp)和寡聚U序列(至少4个U)长度的增加,终止效率逐步提高。依赖于因子的终止因子是一个相对分子质量为2.0×105的六聚体蛋白,它能水解各种核苷酸三磷酸,实际上是一种NTP酶,它通过催化NTP的水解促使新生RN
44、A链从三元转录复合物中解离出来,从而终止转录。抗转录终止主要有两种方式:1.破坏终止位点RNA的茎环结构2.依赖于蛋白质因子的转录抗终止3.3 原核生物与真核生物mRNA的特征比较原核生物mRNA的特征mRNA在大肠杆菌细胞内占总RNA的2%左右(tRNA占16%,而rRNA则占80%以上)。原核生物中,mRNA的转录和翻译不仅发生在同一个细胞空间里,而且这两个过程几乎是同步进行的,蛋白质合成往往在mRNA刚开始转录时就被引发了。一个原核细胞的mRNA(包括病毒)有时可以编码几个多肽。1.原核生物mRNA的半衰期短2.许多原核生物mRNA以多顺反子的形式存在3.原核生物mRNA的5端无帽子结构
45、,3端没有或只有较短的poly(A)结构4.原核生物起始密码子AUG上游7-12个核苷酸处有一被称为SD序列(Shine Dalgarno sequence)的保守区,因为该序列与16S-rRNA 3端反向互补,所以被认为在核糖体-mRNA的结合过程中起作用。只编码一个蛋白质的mRNA称为单顺反子mRNA(monocistronic mRNA), 把编码多个蛋白质的mRNA称为多顺反子mRNA(polycistronic mRNA)。多顺反子mRNA是一组相邻或相互重迭基因的转录产物,这样的一组基因可被称为一个操纵子(operon),是生物体内的重要遗传单位。如大肠杆菌乳糖操纵子转录成编码3条
46、多肽的多顺反子mRNA,经过翻译生成半乳糖苷酶、透过酶及乙酰基转移酶。真核生物mRNA的特征前体RNA 成熟mRNA“基因”的分子生物学定义是:产生一条多肽链或功能RNA所必需的全部核苷酸序列!1. 真核生物mRNA的5端存在“帽子”结构:pppApNpNp 。2. 绝大多数真核生物mRNA具有多聚(A)尾巴。帽子结构帽子被扣在了mRNA的5端,并可能在几个位置发生甲基化。mRNA5端加“G”的反应是由鸟苷酸转移酶完成的 。帽子甲基化作用帽子0:出现在所有真核生物中。尿苷酸一7一甲基转移酶 在G的7N位甲基化 帽子1:除单细胞生物以外所有其他真核生物中都有的最主要的帽子。 2一甲基一转移酶第2
47、个碱基的2OH位置上(实际上在任何修饰反应进行前,它是转录物中原来的第1个碱基)帽子2:甲基基团可以添加到戴帽mRNA的第3碱基上。这个反应的底物是已经具有两个甲基基团的帽子mRNA。2一甲基一转移酶催化2OH位置上甲基化这种帽子通常低于戴帽群体总量的1015。二、mRNA的转录后修饰-帽子1、 帽子的种类帽子0(Cap-0) m7GpppXpYp-(共有)帽子1 (Cap-1) m7GpppXmpYp-第一个核苷酸的 2-O 位上产生甲基化 (A N6 位甲基化)帽子2(Cap-2) m7GpppXmpYm 第二个核苷酸的 2-O 位上产生甲基化(A、G、C、U)其中: 单细胞真核生物只有
49、寿命有关(3) 与翻译有关a、 缺失可抑制体外翻译的起始 b、 胚胎发育中,poly(A) 对其mRNA的翻译有影 响(非poly(A) 化的为储藏形式)c、对含 poly(A) 的mRNA 失去 poly(A) 可减弱其翻译(4) poly(A) 在分子生物学实验中有很大应用价值a、 也可将 oligo (dT) 与载体相连,从总体RNA中分离 纯化mRNAb、 用寡聚dT(oligo (dT))为引物,反转录合成 cDNA若 干 基 本 概 念基因表达的第一步以D. S. DNA中的一条单链作为转录的模板在依赖DNA的RNA聚合酶的作用下按A U,CG 配对的原则,合成RNA分子模板单链
50、DNA的极性方向为3 5, 而非模板单链DNA的极性方向与RNA链相同,均为5 3.模板单链 DNA的极性方向为3 5, 而非模板单链DNA的极性方向与RNA链相同,均为5 3.3.5 内含子的剪接、编辑及化学修饰一、概述割裂基因(split gene):指编码某一RNA的基因中有些序列并不出现在成熟的RNA序列中,成熟RNA的序列在基因中被其他的序列隔开内含子(intron):原初转录物中通过RNA拼接反应而被去除的RNA序列或基因中与这些RNA序列相应的DNA序列外显子(excon):RNA拼接(RNA splicing):一个基因的外显子和内含子共同转录在一条转录产物中,将内含子去除而把
51、外显子连接起来形成成熟RNA分子的过程 拼接点: 5 拼接点或左拼接点(内含子上游)3 拼接点或右拼接点(下游)真核生物mRNA前体的加工:1. 5端形成特殊的帽子结构2. 在3端切断并加上一个poly(A)的尾巴3. 通过剪接除去转录来的IVS(非翻译区)4. 链内部核酸的甲基化内含子的分类中部核心结构(central core structure):在有些内含子中,含有4个重复的保守序列,长度为10 20bp,4个保守序列构成一种二级结构,在拼接中起重要作用由于并非所有的内含子都有中部核心结构,所以有了内含子的分类 类(group ):含有中部核心结构的细胞器基因 核基因类(group )
52、:不含有中部核心结构细胞器线粒体基因内 核基因 类(group ):具有 GUAG 特征的边界序列核基因mRNA前体 RNA基因的内元均位于 tRNA 的反密码环上3、拼接方式方式一:由拼接装置完成(核mRNA内含子)可供识别的特异序列拼接装置由多种蛋白质和核蛋白组成方式二:自我拼接(两类内含子 、 )形成特定的二级结构RNA具有催化拼接的能力方式三:需要蛋白质酶参与的拼接(酵母tRNA)前两种拼接都属于转酯反应RNA的剪接实质:就是要把断裂基因的内含子除去,连接外显子。剪切方式:mRNA前体的剪接;自我剪接;蛋白质剪接(tRNA)。剪接体(spliceosome):各种参与剪接的成分形成的一
53、个体系。Ribozyme:有酶活性的RNA。拼接机制(Splicing mehanism )SnRNA (or ScRNA) 与拼接点序列间存在互补区域并参与剪接, 形成拼接体( spliceosome)。Spliceosome 逐级组装, SnRNA(U1、U2、U5和U4U6)分步替代U1通过5,拼接点互补而结合 U2识别并结合分支点A U1和U2作用使内元的 5端和 3端带到 一起(U1与 3拼接点配对) U1、U2、mRNA与U4U5U6复合物形成一个完整的拼接体RNA的编辑:是在mRNA水平上改变遗传信息的过程。种类:单碱基突变;尿苷酸的缺失和添加化学修饰:甲基化;硫代;二价键的饱和
56、转录后的成熟步骤主要包括 5端形成特殊的帽子结构在3端切断并加上一个poly(A)的尾巴通过剪接除去转录来的IVS(非翻译区)链内部核酸的甲基化生物信息的传递(下)从mRNA到蛋白质4.1 遗传密码三联子遗传密码(code):mRNA中蕴藏遗传信息的碱基顺序称为遗传密码,密码是密码子的总和。密码子(codon): mRNA中每个相邻的三个核苷酸翻译成蛋白质多肽链上的一个氨基酸,这三个核苷酸就称为一个密码子。阅读框(reading frame):遗传密码是三个一读,称为阅读框。AUG:蛋氨酸(Met)或起始密码UAA、UAG、UGA:终止密码UAG琥珀型(amber)密码子UGA蛋白石(opal)密
0/150
联系客服
本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!