摘要: 五大连池火山熔岩台地是一种火山地貌, 研究熔岩台地草本物种分布及其环境解释, 对认识火山原生演替过程中植物群落空间格局形成及适应机制具有重要意义。本文以五大连池熔岩台地的草本物种为研究对象, 调查了苔藓、草本、灌丛、阔叶林和针阔混交林等不同植被类型中的草本层样方, 并测定样方中的土壤养分和水分等状况, 采用多样性指数、优势度指数、均匀度指数、物种丰富度评价草本层物种多样性, 通过典范对应分析方法研究了群落组成与土壤因子的关系。结果表明: (1)熔岩台地草本层物种丰富, 共56种, 占本研究调查区总物种数的82.35%, 草本样地的草本层物种多样性、优势度和均匀性高于其他植被类型。(2)熔岩台地土壤pH值对群落草本层物种丰富度和物种个体的空间分布均有较大影响。(3)土壤因子解释了群落分布的79.39%, 其中土壤pH值、速效磷、硝态氮、铵态氮所占的解释量比较大。(4)岩败酱(Patrinia rupestris)、万年蒿(Artemisia sacrorum)、硬质早熟禾(Poa sphondylodes)和中华苦荬菜(Ixeris chinensis)对环境要求较低, 能够适应熔岩台地土壤贫瘠恶劣的环境。熔岩台地不同植被类型表现出对环境资源的特定需求, 熔岩地貌导致了土壤pH值、养分、水分的差异, 并影响植物群落的分布。
五大连池火山熔岩台地是一种火山地貌, 研究熔岩台地草本物种分布及其环境解释, 对认识火山原生演替过程中植物群落空间格局形成及适应机制具有重要意义。本文以五大连池熔岩台地的草本物种为研究对象, 调查了苔藓、草本、灌丛、阔叶林和针阔混交林等不同植被类型中的草本层样方, 并测定样方中的土壤养分和水分等状况, 采用多样性指数、优势度指数、均匀度指数、物种丰富度评价草本层物种多样性, 通过典范对应分析方法研究了群落组成与土壤因子的关系。结果表明: (1)熔岩台地草本层物种丰富, 共56种, 占本研究调查区总物种数的82.35%, 草本样地的草本层物种多样性、优势度和均匀性高于其他植被类型。(2)熔岩台地土壤pH值对群落草本层物种丰富度和物种个体的空间分布均有较大影响。(3)土壤因子解释了群落分布的79.39%, 其中土壤pH值、速效磷、硝态氮、铵态氮所占的解释量比较大。(4)岩败酱(Patrinia rupestris)、万年蒿(Artemisia sacrorum)、硬质早熟禾(Poa sphondylodes)和中华苦荬菜(Ixeris chinensis)对环境要求较低, 能够适应熔岩台地土壤贫瘠恶劣的环境。熔岩台地不同植被类型表现出对环境资源的特定需求, 熔岩地貌导致了土壤pH值、养分、水分的差异, 并影响植物群落的分布。
AbstractThe Wudalianchi volcanic lava platform, a volcanic landscape, is important to understand plant community mechanisms to volcanic primary succession. In this paper, the herbaceous species of the Wudalianchi volcanic lava platform were studied, which belonged to bryophyte, herb, shrub, mixed-forest, and mixed coniferous and broad-leaved forest plots. Soil nutrients and soil moisture were also studied with the canonical correspondence analysis (CCA) method along with species diversity indices such as the Simpson, Shannon-Wiener, Pielou, and species richness indices. Our results show that: (1) There were 56 plant species in the herb layer, accounting for 82.35% of the total species in the volcanic platform while diversity, dominance, and evenness indices of the herb layer was higher than other vegetation types. (2) Soil pH had a considerable influence on species richness and spatial distribution of herbaceous species in the herb layer. (3) Soil factors accounted for 79.39% of the community’s distribution, among which soil pH, available phosphorus, nitrate nitrogen, and ammonium nitrogen accounted for a large proportion. (4) Patrinia rupestris, Artemisia sacrorum, Poa sphondylodes, and Ixeris chinensis had low environmental requirements and adapted uniquely to the poor environment of the lava platform. Vegetation within the platform showed specific resource demands, which are due to differences in lava type that alter soil water, pH, and soil nutrients, thereby impacting plant community distributions.
The Wudalianchi volcanic lava platform, a volcanic landscape, is important to understand plant community mechanisms to volcanic primary succession. In this paper, the herbaceous species of the Wudalianchi volcanic lava platform were studied, which belonged to bryophyte, herb, shrub, mixed-forest, and mixed coniferous and broad-leaved forest plots. Soil nutrients and soil moisture were also studied with the canonical correspondence analysis (CCA) method along with species diversity indices such as the Simpson, Shannon-Wiener, Pielou, and species richness indices. Our results show that: (1) There were 56 plant species in the herb layer, accounting for 82.35% of the total species in the volcanic platform while diversity, dominance, and evenness indices of the herb layer was higher than other vegetation types. (2) Soil pH had a considerable influence on species richness and spatial distribution of herbaceous species in the herb layer. (3) Soil factors accounted for 79.39% of the community’s distribution, among which soil pH, available phosphorus, nitrate nitrogen, and ammonium nitrogen accounted for a large proportion. (4) Patrinia rupestris, Artemisia sacrorum, Poa sphondylodes, and Ixeris chinensis had low environmental requirements and adapted uniquely to the poor environment of the lava platform. Vegetation within the platform showed specific resource demands, which are due to differences in lava type that alter soil water, pH, and soil nutrients, thereby impacting plant community distributions.
图1 五大连池火山熔岩台地地理位置及分布
Fig. 1 Geographical location and distribution in Wudalianchi volcanic lava platform
表1 五大连池火山熔岩台地样地基本信息
Table 1 The basic information of sample plots in Wudalianchi volcanic lava platform
表2 五大连池火山熔岩台地不同植被类型草本层优势物种重要值
Table 2 Importance values of dominant species in herb layer of different vegetation types in Wudalianchi volcanic lava platform
图2 五大连池火山熔岩台地不同植被类型草本层物种多样性指数(平均值 ± 标准差)。同组不同小写字母表示差异显著(P < 0.05)。
Fig. 2 Species diversity indices of herb layer of different vegetation types in Wudalianchi volcanic lava platform (mean ± SD). Different lowercase letters in the same group indicate significant difference (P < 0.05).
图3 五大连池火山熔岩台地草本层物种多样性与土壤因子的关系
Fig. 3 Relationship between species diversity of herb layer and soil factors in Wudalianchi volcanic lava platform
表3 土壤因子与物种排序轴的相关系数、特征值和解释方差
Table 3 Correlation coefficient, eigenvalue and explanatory variance of soil factors and species ordination axis
图4 群落组成与土壤因子的典范对应分析(CCA)排序图。A: 群落; B: 物种。Dm: 小花花旗杆; Ic: 中华苦荬菜; Lm: 鹤虱; Pv: 东北多足蕨; Sv: 狗尾草; Tl: 野火球; Ua: 狭叶荨麻。群落序号和其他物种缩写分别见表1和表2, 土壤因子缩写见表4。Fig. 4 Canonical correspondence analysis (CCA) ordination diagram of community composition and environmental factors. A, community; B, Species. Dm, Dontostemon micranthus; Ic, Ixeris chinensis; Lm, Lappula myosotis; Pv, Polypodium virginianum; Sv, Setaria viridis; Tl, Trifolium lupinaster; Ua, Urtica angustifolia. The number of community and other abbreviation of species are the same as in Table 1 and Table 2, respectively. Abbreviation of soil factors are the same as in Table 4.