滇西三江构造带电性结构特征——以福贡

滇西三江构造带电性结构特征——以福贡-巧家剖面为例

中国地质大学(武汉)地球物理与空间信息学院, 武汉 430074

中国地质科学院地质研究所, 北京 100037

西南科技大学环境资源学院, 四川绵阳 621010

成都理工大学, 成都 610059

中国地质大学(北京)地球物理与信息技术学院, 北京 100083

国家重点研发计划专题"深层地球物理信息与识别技术(2016YFC060110602)"和中国地质调查局项目(1212011121273,DD2016002)联合资助

中图分类号:P541;P631

School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

School of Environment and Resource, Southwest University of Science and Technology, Sichuan Mianyang 621020, China

Chengdu University of Technology, Chengdu 610059, China

School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

为查明滇西三江构造带及邻区复杂的构造特征,并揭示该区深部电性结构,沿福贡—巧家布设了一条长约410 km的大地电磁剖面.共观测到61个物理点,其中宽频大地电磁测点41个,长周期大地电磁测点20个.通过对采集到的数据进行一系列的处理、反演,得到了沿剖面的壳幔电性结构模型.并结合研究区内区域地质资料及其他地球物理资料,对剖面所经过的各个主要地质构造单元及主要断裂带进行了综合解释.电性结构模型揭示沿剖面地壳电性层次复杂,深部电性结构由西往东呈分块展布,横向变化大,壳内广泛发育低阻异常.在中甸构造带(香格里拉地块)和盐源—永胜构造带深部壳幔存在大规模低阻异常,这可能与地下局部熔融体和地热流有关;康滇构造带壳幔存在大规模高阻异常,表明地壳中曾经有地幔物质侵入;在大凉山构造带地下10~50 km深处存在一呈横向"半月形"展布的低阻体,电阻率值不满10 Ωm,结合地质资料与前人的研究成果,推测该低阻体成因应与青藏高原东南缘"地壳管道流"有一定关联.

In order to explore the complicated structural features of the Sanjiang tectonic belt and its adjacent areas and reveal the deep electrical resistivity structure, we deployed a 410 km-long Magnetotelluric (MT) profile along the Fugong-Qiaojia area. A total of 61 physical points were observed, including 41 broadband MT sounding stations and 20 long-period magnetotelluric sounding stations. After processing, two-dimensional inversion of the observed field data yielded a crust and mantle electrical resistivity structure model along the profile. Combined with regional geological data and other geophysical data in the study area, the main tectonic units and fault zones passing through the profile are comprehensively interpreted. The resistivity model reveals that the crust and mantle electrical resistivity structure in the study area is transversely partitioned in the east-west direction. From east to west, the electrical anomaly thickness and burial depth are different. In the Zhongdian tectonic belt, there are large-scale low-resistivity zones in the middle and upper crust, which may be related to partial melting and heat flow. High-resistivity bodies exist in the middle and upper crust of the Kangdian tectonic belt, indicating that there are mantle materials intruding into the crust. There is a low-resistance body at depths of 10~50 km in the Daliang Shan tectonic belt, which looks like half-lunar shaped, and the resistivity value is less than 10 Ωm. Based on the geological data and previous research results, it is speculated that the cause of the low-resistance body could be related to the "crustal channel flow" on the southeast margin of the Tibetan Plateau.

图 1研究区构造简图

研究区构造简图

图 2大地电磁测线测线位置

大地电磁测线测线位置

Figure 2.Map showing location of the magnetotelluric sounding line and tectonic setting in the study area

Map showing location of the magnetotelluric sounding line and tectonic setting in the study area

图 3相位张量分解得到的沿测线椭圆分布特征及二维偏离度(100 Hz、10 Hz、100 s、10000 s)

相位张量分解得到的沿测线椭圆分布特征及二维偏离度(100 Hz、10 Hz、100 s、10000 s)

Figure 3.Elliptic characteristics and skewness along the profile calculated by phase tensor decomposition

Elliptic characteristics and skewness along the profile calculated by phase tensor decomposition

图 4沿剖面经拼接后宽频+长周期大地电磁典型测点测深曲线

沿剖面经拼接后宽频+长周期大地电磁典型测点测深曲线

Figure 4.Scatter diagrams of MT+LMT sounding curves of typical stations along the profile

Scatter diagrams of MT+LMT sounding curves of typical stations along the profile

图 6不同模式反演模型

不同模式反演模型

Figure 6.Inversion models of different manners

Inversion models of different manners

图 5不同反演参数下的正则化因子曲线

不同反演参数下的正则化因子曲线

Figure 5.L-curve for regularization factor analysis with different inversion factors

L-curve for regularization factor analysis with different inversion factors

图 7实测的测深曲线与相应曲线的对比

实测的测深曲线与相应曲线的对比

Figure 7.Comparison of 2D calculated and measured responses

Comparison of 2D calculated and measured responses

图 8地质剖面与MT+LMT联合反演电性结构模型

地质剖面与MT+LMT联合反演电性结构模型

Figure 8.Geological section, 2-D crust and upper mantle resistivity electrical structure model from MT+LMT joint inversion

Geological section, 2-D crust and upper mantle resistivity electrical structure model from MT+LMT joint inversion

Cheng J, Liu J, Xu X W, et al. 2014. Tectonic characteristics of strong earthquakes in Daliangshan sub-block and impact of the MS6.5 Ludian earthquake in 2014 on the surrounding faults. Seismology and Geology (in Chinese), 36(4):1228-1243.

Cong B L. 1988. The Formation and Evolution of the Panxi Paleorift (in Chinese). Beijing:Science Press.

Dong M L. 2016. Study of magmatism in Tengchong-Baoshan block, western Yunnan and its tectonic implications[Ph. D. thesis] (in Chinese). Beijing: China University of Geosciences.

Hu G Y, Li Y H, Zeng P S. 2013. The role of halosalt in mineralization of the Jinding Pb-Zn deposit:Evidence from sulfur and strontium isotopic compositions. Acta Geologica Sinica (in Chinese), 87(11):1694-1702.

Huang J L, Wang S Y, Song X D. 2001. The Pn velocity structure and anisotropy at the top of upper mantle in Sichuan-Yunnan region and its adjacent area.//Proceedings of the 17th annual meeting of the Chinese Geophysical Society (in Chinese). Kunming: Yunnan Science Technology Press.

Huang J Q. 1994. On Major Tectonic Forms of China (in Chinese). 2nd ed. Beijing:Geological Publishing House.

Huang J Q, Chen B W. 1987. The Evolution of Tethys in China and Adjacent Regions. Beijing:Geological Publishing House.

Kong X R, Liu S J, Dou Q C, et al. 1987. Electrical conductivity structure in the crust and upper mantle in the region of Pan-Xi rift. Acta Geophysica Sinica (in Chinese), 30(6):136-143.

Metcalfe I. 2013. Gondwana dispersion and Asian accretion:Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66:1-33.

Song F M, Wang Y P, Yu W X, et al. 1998. Xiaojiang Active Fault Zone (in Chinese). Beijing:Seismological Press.

Sun J, Jin G W, Bai D H, et al. 2003. Sounding of electrical structure of the crust and upper mantle along the eastern border of Qinghai-Tibet Plateau and its tectonic significance. Science in China Series D:Earth Sciences, 46(S2):242-253.

Ueno K. 2000. Permian fusulinacean faunas of the Sibumasu and Baoshan blocks, implications for the paleogeographic reconstruction of the Cimmerian continent. Geoscience Journal, 4:160-163.

Vozoff K. 1991. The magnetotelluric method.//Nabighian M N ed. Electromagnetic Methods in Applied Geophysics. Tulsa, OK, USA: Society of Exploration Geophysicists.

Wei W B, Jin S, Ye G F, et al. 2010. On the conductive structure of Chinese continental lithosphere——experiment on "standard monitoring network" of continental EM parameters (SinoProbe-01). Acta Geologica Sinica (in Chinese), 84(6):788-800.

Xia J W, Wu S Z, Zhu M. 2015. The feature, activity and seismic risk evaluation of Deccan faults. Journal of Geodesy and Geodynamics (in Chinese), 35(4):561-566.

Ye T. 2013. Deep electric structure beneath the Yingjiang-Longling area in southwestern Yunnan and its implications for kinetics[Master's Thesis] (in Chinese). Beijing: Institute of Geology, China Earthquake Administration.

Yunnan Bureau of Geology and Mineral Resources. 1990. Yunnan Regional Geology (in Chinese). Beijing:Geological Publishing House.

Zhang G. 2015. Research on long-period magnetotelluric data processing[Ph. D. thesis] (in Chinese). Chengdu: Chengdu University of Technology.

Zhang Z J, Bai Z M, Wang C Y, et al. 2005. The crustal structure under Sanjiang and its dynamic implications:Revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan. Science in China Series D:Earth Sciences, 48(9):1329-1336.

Zhao G Z, Unsworth M J, Zhan Y, et al. 2012. Crustal structure and rheology of the Longmenshan and Wenchuan MW7.9 earthquake epicentral area from magnetotelluric data. Geology, 40(12):1139-1142.

程佳, 刘杰, 徐锡伟等. 2014.大凉山次级块体内强震发生的构造特征与2014年鲁甸6.5级地震对周边断层的影响.地震地质, 36(4):1228-1243.

从柏林. 1988.攀西古裂谷的形成与演化.北京:科学出版社.

董美玲. 2016.滇西腾冲-保山地块岩浆作用研究及其构造意义[博士论文].北京: 中国地质大学.

黄金莉, 汪素云, 宋晓东. 2001.川滇及邻区上地幔顶部Pn波速度结构及各向异性.//2001年中国地球物理学会年刊——中国地球物理学会第十七届年会论文集.昆明: 云南科技出版社.

黄汲清. 1994.中国主要地质构造单位. 2版.北京:地质出版社.

黄汲清, 陈炳蔚. 1987.中国及邻区特提斯海的演化.北京:地质出版社.

宋方敏, 汪一鹏, 俞维贤等. 1998.小江活动断裂带.北京:地震出版社.

叶涛. 2013.云南盈江-龙陵地区的深部电性结构及其动力学意义研究[硕士论文].北京: 中国地震局地质研究所.

云南省地质矿产局. 1990.云南省区域地质志.北京:地质出版社.

张刚. 2015.长周期大地电磁数据处理方法研究[博士论文].成都: 成都理工大学.

图(8)

返回顶部

Map showing location of the magnetotelluric sounding line and tectonic setting in the study area

Elliptic characteristics and skewness along the profile calculated by phase tensor decomposition

Scatter diagrams of MT+LMT sounding curves of typical stations along the profile

Inversion models of different manners

L-curve for regularization factor analysis with different inversion factors

Comparison of 2D calculated and measured responses

Geological section, 2-D crust and upper mantle resistivity electrical structure model from MT+LMT joint inversion

THE END
0.东南亚红土镍矿床地质地球化学特征及成因探讨——以印尼苏拉威西付伟,周永章,陈远荣,胡云沪,陈南春,牛虎杰,张志伟,李小龙等.东南亚红土镍矿床地质地球化学特征及成因探讨——以印尼苏拉威西岛Kolonodale矿床为例[J].地学前缘,2010(02):133-145. Kolonodale矿床是东南亚红土镍矿带上一处典型矿床,位于印度尼西亚苏拉威西岛东部.矿床产自富镁超基性岩红土风化壳,矿化剖面自上而下jvzquC41eep/rtz0gf{/ew4Ctvodnn4kphu@cri?4;:14:699
1.沉积岩[6] 薛步高.云南钴矿地质特征及找矿探讨[J].化工矿产地质,2001,23(4):210-216.XUE Bu-gao.Geological Characteristics of Cobalt Resources in Yunnan and Its Exploring Guide[J].Geology of Chemical Minerals,2001,23(4):210-216.[7] 肖晓牛,张少云,鞠昌荣,等.云南东川人占石铜矿床地质特征及成因研究[jvzquC41lgyf0lmf0gjv0ls1qc5EC{ykenk/c|uzAvqgF{kgy,jfF724667297
2.百年志书活起来找矿经验用起来9月26日,王登红在第三批省级矿产地质志续编与产品服务项目结题验收会上总结各省志书成果应用。 9月17日,第二批省级矿产地质志续编与产品服务项目结题验收会现场。 近日,中国矿产地质志项目办公室在京分三批召开省级矿产地质志续编与产品服务项目结题验收会,对全国各省志书研编后续的完善和服务应用进行总结。以此为标jvzquC41yy}/kƒntcp4og}4pgyy/j}rnAcoe?>9545::
3.滇东南坤洪磁铁矿床成因:来自磁铁矿的证据摘要:南盘江–右江成矿带是我国重要成矿带,本文通过研究坤洪磁铁矿床中含矿矽卡岩的岩相学和矿石中磁铁矿的矿物化学特征,探讨磁铁矿床的成因。坤洪磁铁矿床中磁铁矿的形成过程可分为两个阶段:1) 早期进变质矽卡岩阶段形成的较自形磁铁矿(第一世代磁铁矿)含量较少,该阶段的成矿作用相对较弱,是磁铁矿的次要成矿阶段;2) 晚期退变质矽 jvzquC41yy}/jjsurwh/q{l1lq{spjq1RcvftRshqtsbvrtp0cyqzHucrgxJFF;6:;;
4.intheGiantPulangPorphyryCuActa Petrologica Sinica, 2021, 37(9):2723−2742. doi: 10.18654/1000-0569/2021.09.08 [4] 邓明华,方贵聪,赵如意,等. 广东大宝山铜多金属矿床伴生碲铋矿物特征及其指示意义[J]. 矿产与地质,2022,36(5):962−970. doi: 10.19856/j.cnki.issn.1001-5663.2022.05.007 Deng M H,Fang G C,Zhaojvzq<84yyy4zmlx0ce4dp8jp1cxuklqg1[814<4K51<55
5.新疆尼勒克县松湖铁矿地质特征及成因初探新疆尼勒克县松湖铁矿地质特征及成因初探,西天山,松湖铁矿,地质特征,成因。近年来,随着在新疆西天山地区地质大调查项目的蓬勃开展,在阿吾拉勒铁铜成矿带上陆续发现了一批中型-大型铁铜矿。研究阿吾拉勒jvzquC41ycv/ewpk0pku1uzpygt.396545:7493pj0nuou
6.云南福贡县大和铁矿特征及找矿前景摘要:大和磁铁矿矿体赋存于古元古界崇山岩群中,矿体产状与围岩产状一致,矿床成因属火山沉积变质型铁矿床.本矿区还存有多个强度高、范围规模大的磁异常带,因而在该区有望找到大型低品位磁铁矿床. 关键词: 火山沉积变质型铁矿层控矿床云南福贡大和 分类号: P618.31(矿床学) 资助基金: K2013018 ( 编码 ) 在线出版jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1{pj{496724618
7.云南怒江普拉底地区铁矿分布特征及成因浅析云南怒江普拉底地区在石炭系嘎拉博岩组上段(Cg.~3)地层中圈出了一条长度近27km,厚度近百米的铁矿化带,目前矿化带内共发现了11个铁矿床点,这些铁矿床点的地质特征类似,矿床成因类型相同。该铁矿化带是由于早期石炭纪的火山-沉积建造,遭受了区域(共6页) jvzquC41ocrm0lsmk0tfv8rcic€jpn4Ctvodnn4[P\J32:>242680qyo
8.新疆尼勒克县松湖铁矿地质特征及成因初探新疆尼勒克县松湖铁矿地质特征及成因初探,西天山,松湖铁矿,地质特征,成因,近年来,随着在新疆西天山地区地质大调查项目的蓬勃开展,在阿吾拉勒铁铜成矿带上陆续发现了一批中型-大型铁铜矿。研究阿吾拉勒铁jvzquC41ycv/ewpk0pku1}twej5xgk4Fkuyft}fvkqt0C{ykenk0396545:7493pj0nuou
9.滇东北铅锌矿床的基本地质特征与矿床成因的初步探讨滇东北(包括相邻的四川边境和黔西北),铅锌矿床(点)及化探异常星罗棋布。以往除少数矿区进行过勘探外,大部分铅锌矿床(点)的工作程度较低,有待进一步工作。滇东北铅锌矿床的成因,过去一直认为是中—低温热液充填-交代矿床,但从整个滇东北铅锌矿床的基本地质特征及同位素资料来jvzquC41yy}/intlqwxocux0ep5hgxwgxgt0inttgxko1jwvkerf1jguvtgdv86;:4659;
10.云南怒江普拉底地区铁矿分布特征及成因浅析期刊摘要:云南怒江普拉底地区在石炭系嘎拉博岩组上段(Cg.3)地层中圈出了一条长度近27km,厚度近百米的铁矿化带,目前矿化带内共发现了11个铁矿床点,这些铁矿床点的地质特征类似,矿床成因类型相同.该铁矿化带是由于早期石炭纪的火山-沉积建造,遭受了区域变质作用之后形成的,而单个工业矿体的形成则与燕山期酸性岩体侵入,所jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1{pj{496;24619
11.印度尼西亚苏拉威西岛砾岩型红土镍矿床地质特征及成因2015 文章编号: 1004—5589 ( 2015) 01—0120—07 印度尼西亚苏拉威西岛砾岩型红土镍矿床地质特征及成因 程立群1 ,刘剑波1 ,任学义1 ,吴国学2 1. 河北省地矿局秦皇岛矿产水文工程地质大队,河北 秦皇岛 066001; 2. 吉林大学 地球科学学院,长春 130061 摘要: 红土型镍矿是基性,超基性岩在热带,亚热带地区常年jvzq<84ulf€/luz0gf{/ew4EP1VEH8>88