什么是数据倾斜数据倾斜发生时的现象

KiCad 华秋发行版 new

供应链、设计、制造,一体成就未来

华秋PCB

高可靠多层板制造商

华秋SMT

高可靠一站式PCBA智造商

华秋商城

自营现货电子元器件商城

PCB Layout

高多层、高密度产品设计

钢网制造

专注高品质钢网制造

BOM配单

专业的一站式采购解决方案

华秋DFM

一键分析设计隐患

华秋认证

认证检测无可置疑

发资料

发帖

提问

发视频

扫码添加小助手

加入工程师交流群

一、数据倾斜的基本概念

01 什么是数据倾斜?

02‍ 数据倾斜发生时的现象?

(1)绝大多数task执行得都非常快,但个别task执行的极慢。

(2)原本能正常执行的Spark作业,某天突然爆出OOM(内存溢出)异常。观察异常栈,是我们写的业务代码造成的。

03 通用的常规解决方案

(1)增加jvm内存,这适用于第一种情况(唯一值非常少,极少数值有非常多的记录值(唯一值少于几千)),这种情况下,往往只能通过硬件的手段来进行调优,增加jvm内存可以显著的提高运行效率。

(2)增加reduce的个数,这适用于第二种情况(唯一值比较多,这个字段的某些值有远远多于其他值的记录数,但是它的占比也小于百分之一或千分之一),我们知道,这种情况下,最容易造成的结果就是大量相同key被partition到一个分区,从而一个reduce执行了大量的工作,而如果我们增加了reduce的个数,这种情况相对来说会减轻很多,毕竟计算的节点多了,就算工作量还是不均匀的,那也要小很多。

(3)自定义分区,这需要用户自己继承partition类,指定分区策略,这种方式效果比较显著。(4)重新设计key,有一种方案是在map阶段时给key加上一个随机数,有了随机数的key就不会被大量的分配到同一节点(小几率),待到reduce后再把随机数去掉即可。(5)使用combinner合并,combinner是在map阶段,reduce之前的一个中间阶段,在这个阶段可以选择性的把大量的相同key数据先进行一个合并,可以看做是local reduce,然后再交给reduce来处理,这样做的好。 04 通用定位发生数据倾斜的代码

(1)数据倾斜只会发生在shuffle中,下面是常用的可能会触发shuffle操作的算子:distinct、groupByKey、reduceByKey、aggregateByKey、join、cogroup、repartition等。出现数据倾斜时,可能就是代码中使用了这些算子的原因。

(2)通过观察spark UI,定位数据倾斜发生在第几个stage中,如果是用yarn-client模式提交,那么本地是可以直接看到log的,可以在log中找到当前运行到了第几个stage;如果用yarn-cluster模式提交,可以通过Spark Web UI 来查看当前运行到了第几个stage。此外,无论是使用了yarn-client模式还是yarn-cluster模式,我们都可以在Spark Web UI 上深入看一下当前这个stage各个task分配的数据量,从而进一步确定是不是task分配的数据不均匀导致了数据倾斜。 二、 Hive数据倾斜

1、Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在。

2 、造成数据倾斜的原因

1)、key分布不均匀

2)、业务数据本身的特性

3)、建表时考虑不周

2)SQL语句调节a、如何Join: 关于驱动表的选取,选用join key分布最均匀的表作为驱动表。 做好列裁剪和filter操作,以达到两表做join的时候,数据量相对变小的效果,避免笛卡尔积。 Hive中进行表的关联查询时,尽可能将较大的表放在Join之后。

b、大小表Join,开启mapjoin

mapjoin的原理: MapJoin 会把小表全部读入内存中,在map阶段直接拿另外一个表的数据和内存中表数据做匹配,由于在map是进行了join操作,省去了reduce 阶段,运行的效率就会高很多。参与连接的小表的行数,以不超过2万条为宜,大小不超过25M。设置参数

将热点key打散,但是需要注意,尽量不要在join时,对关联key使用rand()函数。因为在hive中当遇到map失败重算时,就会出现数据重复(数据丢失)的问题,spark引擎使用rand容易导致task失败重新计算的时候偶发不一致的问题。可以使用md5加密唯一维度值的方式替代rand(), 比如: md5(concat(coalesce(sku_id, 0), '_', coalesce(dim_store_num, 0), '_', coalesce(store_id, 0), '_',coalesce(delv_center_id, 0))),其中concat的字段是表的唯一粒度;也可以使用hash。 d、count distinct大量相同特殊值,使用sum...group by代替count(distinct ) 例如

Spark优化数据倾斜的思路,join方式从SMJ方式改成BMJ的方式,但是只适合大小表的情况。优化思路一般是: 改join方式,开启spark自适应框架,优化sql。 1、开启sparksql的数据倾斜时的自适应关联优化

操作步骤:

1、针对KEY进行数量统计2、按照数量从大到小进行排序3、直接取 limit N 即可‍ 方式二:通过sample抽样倾斜KEY适用场景:如果数据量很大,可以通过抽样进行抽取大KEY。能否抽取到大KEY一般和抽取数据比例有关系。操作步骤:

1、对KEY赋值为1,便于下一步进行计数

2、对KEY进行累计

3、对KEY和VALUE交换

4、针对KEY按照字典进行倒排

5、将KEY和VAlUE位置交换,还原到真实的

6、从已排序的RDD中,直接取前N条

数据倾斜一般由Shuffle时数据不均匀导致,一般有三类算子会产生Shuffle:Aggregation (groupBy)、Join、Window。 01 Aggregation

建议打散key进行二次聚合:采用对 非constant值、与key无关 的列进行hash取模,不要使用rand类函数。

目前支持该模式下的倾斜window,(仅支持3.0)

Spark 2.4开启参数

其他参数:

04 数据膨胀(Join)

由于Join语义限制,对于A left join skewed B之类的场景,无法对B进行划分处理,否则会导致数据正确性问题,这也是Spark项目所面临的难题。如果开启以上功能依然不能处理数据倾斜,可以通过开启倾斜key检测功能来定位是哪些key导致了倾斜或膨胀,继而进行过滤等处理。

审核编辑机:刘清

浏览量

浏览量

浏览量

浏览量

原文标题:浅谈离线数据倾斜

扫码添加小助手

加入工程师交流群

下载发烧友APP

电子发烧友观察

长沙市望城经济技术开发区航空路6号手机智能终端产业园2号厂房3层(0731-88081133)

THE END
0.数据倾斜常见原因和解决办法数据倾斜的原因及解决办法数据倾斜常见原因和解决办法 数据倾斜在MapReduce编程模型中十分常见,多个节点并行计算,如果分配的不均,就会导致长尾问题(大部分节点都完成了任务,一直等待剩下的节点完成任务),本文梳理了常见的发生倾斜的原因以及相应的解决办法。 1.map端发生数据倾斜 产生原因:jvzquC41dnuh0lxfp0tfv8okcpmiwjnlkg5bt}neng5eg}fknu524;6668<3
1.2022年最强大数据面试宝典(全文50000字,强烈建议收藏)4. 热点现象(数据倾斜)怎么产生的,以及解决方法有哪些 热点现象: 某个小的时段内,对HBase的读写请求集中到极少数的Region上,导致这些region所在的RegionServer处理请求量骤增,负载量明显偏大,而其他的RgionServer明显空闲。 热点现象出现的原因: HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以jvzquC41dnuh0ryrwd4og}4922776A71xkkxuyfeg/8:3::371
2.2022年最强大数据面试宝典(全文50000字,建议收藏)(四)4. 热点现象(数据倾斜)怎么产生的,以及解决方法有哪些 热点现象: 某个小的时段内,对HBase的读写请求集中到极少数的Region上,导致这些region所在的RegionServer处理请求量骤增,负载量明显偏大,而其他的RgionServer明显空闲。 热点现象出现的原因: HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以jvzquC41fg|fnxugt0gmk‚zp0eun1jwvkerf1B5386:
3.HBase知识手册爱是与世界屏的技术博客Hbase和Hive在大数据架构中处在不同位置,Hbase主要解决实时数据查询问题,Hive主要解决海量数据处理和计算问题,一般是配合使用。 Hbase:Hadoop database 的简称,也就是基于Hadoop数据库,是一种NoSQL数据库,主要适用于海量明细数据(十亿、百亿)的随机实时查询,如日志明细、交易清单、轨迹行为等。 jvzquC41dnuh0>6evq4dqv4nqxkcg}ygtyusnm47;8?45B
4.大数据工程师面试题这一篇就够用了fsimage:记录的是数据块的位置信息、数据块的冗余信息(二进制文件) 由于edits 文件记录了最新状态信息,并且随着操作越多,edits 文件就会越大,把 edits 文件中最新的信息写到 fsimage 文件中就解决了 edits 文件数量多不方便管理的情况。 没有体现 HDFS 的最新状态。 jvzquC41yy}/lrfpuj{/exr1r1:3e<;cg37e7B
5.如何避免数据倾斜数据处理中数据倾斜和数据热点1、数据倾斜的表现 数据倾斜是由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点的现象。 主要表现:任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大。 单一 reduce 处理的记录数和平均记录数相差太大,通常达到好jvzquC41dnuh0lxfp0tfv8|cfljlftillf5bt}neng5eg}fknu526<:9:374
6.分库分表方案中出现数据倾斜问题怎么解决分库分表数据倾斜二、 解决方案 1. 调整分片策略(治本之法) 2. 处理业务热点(治标之法) 3. 其他策略 三、 预防措施 总结 这是一个在分库分表实践中非常经典且棘手的问题。数据倾斜意味着数据并没有均匀地分布在不同数据库或表中,导致某些节点负载过高(存储、CPU、IO),而其他节点却非常空闲,从而成为系统瓶颈,严重影响整体性jvzquC41dnuh0lxfp0tfv8skgvgpl~s1ctzjeuj1fgzbkux137734=684
7.Hadoop·大数据技术栈·看云6.Hadoop解决数据倾斜方法 1、提前在 map 进行 combine,减少传输的数据量 2、导致数据倾斜的 key 加盐、提升 Reducer 并行度 … 7.Hadoop读文件和写文件流程 Hadoop读文件和写文件流程 HDFS-文件读写流程 8.Yarn的Job提交流程 步骤很多,理理清楚然后再有条理的进行回答。 jvzquC41yy}/mjsenq{e0ls1jcvq{ltfg/zpinyjgt5ckpicvc<03?<7746
8.37数据分布优化:如何应对数据倾斜?Redis核心技术与实战如使用配置更高的机器 只适用于只读的热点数据 解决方法 解决方法 解决方法 热点数据多副本 实例上存在热点数据 使用Hash Tag导致倾斜 Slot分配不均衡导致倾斜 bigkey导致倾斜 在构建切片集群时,尽量使用大小配置相同的实例,避免因实例资源不均衡而在不同实例上分配不同数量的Slot 应对方法 成因 成因 小建议 Redis jvzquC41vksf0pjgmdgoi7tti1ipn~rp1cxuklqg15695B8
9.举例说明Spark数据倾斜有哪些场景,对应的解决方案是什么?增加并行度,通过spark.sql.shuffle.partitions设置更高的 Shuffle 分区数,分散热点数据 [^1]。 场景三:Reduce Side Join 导致的倾斜 在没有合适优化手段的情况下,Join 操作只能在 Reduce 阶段完成,容易引发数据倾斜。 解决方法: 尝试将 Reduce Side Join 转换为 Map Side Join,前提是至少有一方数据量较小且可广jvzquC41ygtlw7hufp4og}4cpu}ft86jx|nv6?hy
10.阿里P8整理总结,入职大厂必备Java核心知识(附加面试题)ArrayList和LinkedList区别?HashMap内部数据结构?ConcurrentHashMap分段锁?jdk1.8中,对hashMap和concurrentHashMap做了哪些优化如何解决hash冲突的,以及如果冲突了,怎么在hash表中找到目标值synchronized 和 ReentranLock的区别?ThreadLocal?应用场景?Java GC机制?GC Roots有哪些?MySQL行锁是否会有死锁的情况?jvzquC41oconcr3ep1gsvrhng1jfvjnnAhoe?:<655955><(ghoe?|Tw|Q|yq@Gvec>Co95\mjG
11.新老手都值得看的Flink关键技术解析与优化实战上图为计算最小值的热点问题,红色数据为热点数据。如果直接将它们打到同一个分区,会出现性能问题。为了解决倾斜问题,我们通过 hash 策略将数据分成小的 partition 来计算,如上图的预计算,最后再将中间结果汇总计算。 当一切就绪后,我们来做增量的 UV 计算,比如计算 1 天 uv,每分钟输出 1 次结果。计算方式既可jvzquC41yy}/kwkqs0io1jwvkerf1\OTIQjDj{:PuHGGXPojZ
12.Redis数据库的数据倾斜详解Redis在服务端读数据访问Redis时,往往会对请求key进行分片计算,此时中会将请求打到某一台 Server 上,如果热点过于集中,热点 Key 的缓存过多,访问量超过 Server 极限时,就会出现缓存分片服务被打垮现象的产生。当缓存服务崩溃后,此时再有请求产生,就会打到DB 上,这也就是我们常说的缓存穿透,如果没有合理的解决,数据库jvzquC41yy}/lk:30pku1mfvcdgtg87;45;53}v0jvs
13.解决Redis数据倾斜热点等问题Redis单台机器的硬件配置有上限制约,一般我们会采用分布式架构将多台机器组成一个集群,这篇文章主要介绍了解决 Redis 数据倾斜、热点等问题,需要的朋友可以参考下+ 目录 GPT4.0+Midjourney绘画+国内大模型 会员永久免费使用!【 如果你想靠AI翻身,你先需要一个靠谱的工具!】 Redis 作为一门主流技术,应用场景非常多,很多jvzquC41yy}/lk:30pku1jwvkerf1;;;:9=/j}r
14.HBasehbase每秒最大写入多少5 热点现象( 数据倾斜) 怎么产生的, 以及解决方法有哪些 5.1热点现象   某个小的时段内, 对 HBase 的读写请求集中到极少数的 Region 上, 导致这些region 所在的 RegionServer 处理请求量骤增, 负载量明显偏大, 而其他的RgionServer 明显空闲。 jvzquC41dnuh0lxfp0tfv8vsa6676974:1gsvrhng1jfvjnnu173:;;677<
15.Hbase基本概念比如创建一张表,名为user,有两个列族,分别是userInfo和addressInfo,建表语句create 'user', 'userInfo', 'addressInfo' 3.Timestamp(时间戳):纪录每次操作数据的时间,通常作为数据的版本号 六. 热点现象(数据倾斜)怎么产生的,以及解决方法有哪些 热点现象: jvzquC41dnuh0lxfp0tfv8qkdcuxgw;2;1gsvrhng1jfvjnnu1738?<6987