高二数学水平考知识点总结

总结就是把一个时段的学习、工作或其完成情况进行一次全面系统的总结,通过它可以正确认识以往学习和工作中的优缺点,因此我们要做好归纳,写好总结。那么你知道总结如何写吗?以下是小编收集整理的高二数学水平考知识点总结,仅供参考,希望能够帮助到大家。

复数定义

我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。

复数表达式

虚数是与任何事物没有联系的,是绝对的,所以符合的.表达式为:

a=a+ia为实部,i为虚部

复数运算法则

加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;

减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;

乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。

复数与几何

①几何形式

复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。

②向量形式

复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。

③三角形式

复数z=a+bi化为三角形式

集合间的基本关系

1.“包含”关系—子集

注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

2.“相等”关系(5≥5,且5≤5,则5=5)

实例:设A={_2-1=0}B={-1,1}“元素相同”

结论:对于两个集合A与B,如果集合A的'任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同时BíA那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集

同角三角函数基本关系

⒈、同角三角函数的基本关系式

倒数关系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法:

六角形记忆法:(参看图片或参考资料链接)

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

(1)倒数关系:对角线上两个函数互为倒数;

(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。

(主要是两条虚线两端的三角函数值的'乘积)。由此,可得商数关系式。

(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式:

⒉两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

定义:

x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

范围:

倾斜角的取值范围是0°≤α<180°。

理解:

(1)注意“两个方向”:直线向上的.方向、x轴的正方向;

(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。

意义:

①直线的倾斜角,体现了直线对x轴正向的倾斜程度;

②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;

③倾斜角相同,未必表示同一条直线。

公式:

k=tanα

k>0时α∈(0°,90°)

k<0时α∈(90°,180°)

k=0时α=0°

当α=90°时k不存在

ax+by+c=0(a≠0)倾斜角为A,

则tanA=-a/b,

A=arctan(-a/b)

当a≠0时,

倾斜角为90度,即与X轴垂直

1、在中学我们只研直圆柱、直圆锥和直圆台。

所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。

这样定义直观形象,便于理解,而且对它们的性质也易推导。

对于球的定义中,要注意区分球和球面的概念,球是实心的。

等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。

2、圆柱、圆锥、圆和球的性质

(1)圆柱的性质,要强调两点:

一是连心线垂直圆柱的底面;

二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。

(2)圆锥的性质,要强调三点

①平行于底面的截面圆的性质:

截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。

②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:

易知,截面三角形的顶角不大于轴截面的顶角(如图10—20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC。

由于截面三角形的顶角不大于轴截面的顶角。

所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有当轴截面的顶角θ>90°时,轴截面的面积却不是的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0。

③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式l2=h2+R2

(3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,高考,但仍要强调下面几点:

①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

②平行于底面的截面若将圆台的高分成距上、下两底为两段的.截面面积为S,则其中S1和S2分别为上、下底面面积。

的截面性质的推广。

③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有l2=h2+(R—r)2。

圆台的有关计算问题,常归结为解这个直角梯形。

(4)球的性质,着重掌握其截面的性质。

①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。

②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则R2=r2+d2即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。

反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的'范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

反函数求导方法

若F(X),G(X)互为反函数,

则:F(X)_(X)=1

E.G.:y=arcsinx=siny

y_=1(arcsinx)_siny)=1

y=1/(siny)=1/(cosy)=1/根号(1-sin^2y)=1/根号(1-x^2)

其余依此类推

1、直线的倾斜角的概念:

当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.

2、倾斜角α的取值范围:

0°≤α<180°.

当直线l与x轴垂直时,α=90°.

3、直线的斜率:

一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα

⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;

⑵当直线l与x轴垂直时,α=90°,k不存在.

由此可知,一条直线l的倾斜角α一定存在,但是斜率k不一定存在.

4、直线的斜率公式:

给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:

斜率公式:

3.1.2两条直线的平行与垂直

1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即

注意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2,那么一定有L1∥L2

2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即

3.2.1直线的点斜式方程

1、直线的点斜式方程:直线经过点且斜率为

2、、直线的斜截式方程:已知直线的斜率为

3.2.2直线的'两点式方程

1、直线的两点式方程:已知两点

2、直线的截距式方程:已知直线

3.2.3直线的一般式方程

1、直线的一般式方程:关于x、y的二元一次方程

(A,B不同时为0)

2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式

3.3.1两直线的交点坐标

1、给出例题:两直线交点坐标

L1:3x+4y-2=0

L1:2x+y+2=0

解:解方程组

得x=-2,y=2

所以L1与L2的交点坐标为M(-2,2)

3.3.2两点间距离

两点间的距离公式

3.3.3点到直线的距离公式

1.点到直线距离公式:

2、两平行线间的距离公式:

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

2.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

分层的比例问题

(1)按比例分层抽样:根据各种类型或层次中的单位数目占总体单位数目的比重来抽取子样本的方法。

(2)不按比例分层抽样:有的层次在总体中的比重太小,其样本量就会非常少,此时采用该方法,主要是便于对不同层次的子总体进行专门研究或进行相互比较。如果要用样本资料推断总体时,则需要先对各层的数据资料进行加权处理,调整样本中各层的比例,使数据恢复到总体中各层实际的比例结构。

(1)定义:

对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点。

(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:

方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。

(3)函数零点的判定(零点存在性定理):

如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

二二次函数y=ax2+bx+c(a>0)的图象与零点的关系

二分法

对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

1、函数的零点不是点:

函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的'图象与x轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。

2、对函数零点存在的判断中,必须强调:

(1)、f(x)在[a,b]上连续;

(2)、f(a)·f(b)<0;

(3)、在(a,b)内存在零点。

这是零点存在的一个充分条件,但不必要。

3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。

利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有f(a)·f(b)<0.若有,则函数y=f(x)在区间(a,b)内必有零点。

判断函数零点个数的常用方法

1、解方程法:

令f(x)=0,如果能求出解,则有几个解就有几个零点。

2、零点存在性定理法:

利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

3、数形结合法:

转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

已知函数有零点(方程有根)求参数取值常用的方法

1、直接法:

直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

2、分离参数法:

先将参数分离,转化成求函数值域问题加以解决。

3、数形结合法:

先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

一、不等式

1. 不等式的基本性质

对称性:如果a > b,那么b < a;如果b < a,那么a > b。

传递性:如果a > b,b > c,那么a > c。

加法单调性:如果a > b,那么a + c>b + c。

乘法单调性:如果a > b,c > 0,那么ac > bc;如果a > b,c < 0,那么ac < bc。

2. 一元二次不等式及其解法

对于一元二次不等式ax^{2}+bx + c>0(a≠0),当Δ=b^{2}-4ac时:

若Δ>0,方程ax^{2}+bx + c = 0有两个不同的实根x1,x2(x1 x2}(a>0时);

若Δ = 0,方程ax^{2}+bx + c = 0有两个相同的实根x0=-b/2a,则不等式ax^{2}+bx + c>0(a>0)的解集为{x|x≠ x0};

若Δ<0,方程ax^{2}+bx + c = 0无实根,不等式ax^{2}+bx + c>0(a>0)的解集为R。

3. 简单的线性规划

线性约束条件:由x,y的一次不等式(或方程)组成的不等式组。

目标函数:欲达到最大值或最小值所涉及的变量x,y的解析式。

可行解:满足线性约束条件的解(x,y)。

可行域:所有可行解组成的`集合。

最优解:使目标函数取得最大值或最小值的可行解。

二、数列

1. 数列的概念

数列是按照一定顺序排列的一列数,记为{an},an是数列的第n项。

2. 等差数列

定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数d,即an-a{n - 1}=d(n≥2),这个数列就叫做等差数列,d称为等差数列的公差。

通项公式:an=a1+(n - 1)d。

前n项和公式:Sn=n(a1+an)/2=na1+n(n - 1)/2d。

3. 等比数列

定义:如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数q(q≠0),即an/a{n-1} = q(n≥2),这个数列就叫做等比数列,q称为等比数列的公比。

通项公式:an=a1q^{n - 1}。

前n项和公式:当q = 1时,Sn=na1;当q≠1时,Sn=a1(1 - q^{n})/1 - q}。

THE END
0.倾斜角与斜率的概念人人文库 倾斜角与斜率的概念 搜文档 倾斜角与斜率的概念上传人:彩*** IP属地:天津 上传时间:2022-08-24 格式:DOCX 页数:15 大小:703.43KB 积分:26 第1页 / 共15页 第2页 / 共15页 第3页 / 共15页 第4页 / 共15页 第5页 / 共15页jvzquC41o0xfp{jpfqi/exr1rcvft873:5;6;A70jvsm
1.2.1直线的倾斜角与斜率说课教案2025斜率从代数角度刻划了直线的倾斜程度,不仅是建立直线方程的基础,也是进一步研究变化率或导数的基础。斜率概念产生的过程,充分体现了解析几何的基本思想方法。(1)两点是确定一直线的几何要素,倾斜角是反映直线倾斜程度的几何特征量,借助坐标系,点可以坐标表示,直线的倾斜角自然可由两点的坐标来确定,而引进斜率这一概念jvzquC41yy}/|}m0eun1|thv1;5:@;8234ivvq
2.《直线与平面平行的判定》一等奖说课稿本节课是在学生学习了直线的倾斜角、斜率概念和斜率公式等知识的基础上,进一步探究如何用直线的斜率判定两条直线平行与垂直的位置关系。核心内容是两条直线平行与垂直的判定。它既是直线斜率概念的深化和简单应用,也是后续内容学习的重要基础。因此,我认为本节课的教学重点为:根据两条直线斜率判定两条直线平行与垂直。jvzq<84yyy4ccwjwtko0ls1lkgpz~jlkcubp8686;?:7A:286>33@3jvor
3.高中数学函数教案(精选10篇)知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式。 (二)能力训练点 通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力。 (三)学科渗透点 分析问题、提出问题jvzquC41yy}/fr~khctxgw3eqo5kc8=469?:0qyon
4.中学几何概念的定义方式及应用(三)约定式定义。约定式定义是对于某些给定的某些术语,采用规定(或约定)的方式赋予其特定的意义。例如,“倾斜角”概念中这样约定:“当直线与x轴平行时,其倾斜角为零”。 二、中学几何概念的应用 几何概念是几何学科的奠基石,在许多情形下合理运用定义可以巩固和深化概念,加深概念的内涵与外延的进一步理解。下面仅就jvzq<84yyy4djrscsmooi7hqo1d1;5421837?6850nuou