12、二面角:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,
从一条直线出发的两个半平面所组成的图形叫二面角,这条直线叫做二面角的棱,
一个二面角的大小可用它的平面角的大小来衡量,二面角的平面角是多少度,就说这个二面角是多少度。二面角大小的取值范围是[0,180°]
利用法向量可处理二面角问题
图3 图4
第九讲 直线与方程
利用法向量可处理线面角问题
9、三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 三垂线定理的逆定理:在平面内的一条直线,如果它和这个平面的一条斜线垂直,那么它也和这条斜线在平面内的射影垂直。
8、(1)平面与平面的位置关系:1)平行__没有公共点,2)相交__有且只有一条公共直线。两个平面的公共点都在同一条直线上。
(2)两个平面平行的判定:1)一个如果平面内有两条相交直线和另一个平面平行,则这两个平面平行。简称为“线面平行,则面面平行”,2)推论:如果平面内一个有两条相交直线和另一个平面内两条相交直线平行,那么这两个平面平行。3)垂直于同一条直线的两个平面平行。
两个平面平行的性质定理:1)如果两个平行平面同时与第三个平面相交,那么它们的交线平行。
2)两个平行平面之间的距离处处相等,夹在两个平行平面之间的平行线段也相等。
3)如果两个平面平行,那么一个平面内的所有直线都平行于另一个平面。
(3) 两个平面垂直的判定:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
两个平面垂直的性质定理:1)如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。2)如果两个平面垂直,那么从一个平面内一点作另一个平面的垂线必在第一个平面内。
7、(1)直线与平面的位置关系:1)直线在平面内, 2)直线与平面相交, 3)直线与平面平行, 其中直线与平面相交、直线与平面平行都叫作直线在平面外。
(2)直线与平面平行的判定:如果平面内一条直线和这个平面平面平行,那么这条直线和这个平面平行。简称为“线线平行,则线面平行。”
直线与平面平行的性质定理:如果一条直线和一个平面平行,那么经过这条直线的平面和这个平面相交,交线和这条直线平行,简称为“线面平行,则线线平行”。
(3) 直线与平面垂直的概念:如果一条直线和平平面内任何一条直线都垂直,那么这条直线和这个平面垂直。公理:过一点有且只有一条直线和已知平面垂直。
直线和平面垂直的判定:1)一个平面内两条相交直线都垂直,那么这条直线和这个平面垂直。2)两条平行线中有一条直线和一个平面垂直,那么另一条直线也和这个平面垂直。
直线和平面垂直的性质定理:(1)如果一条直线和一个平面垂直,那么这条直线和这个平面内所有直线都垂直。(2)如果两条直线都垂直于同一个平面,那么这两条直线平行。
6、异面直线的距离:(1)和两条异面直线都垂直相交的直线叫异面直线的公垂线。两条异面直线
5、空间直线的位置关系:(1)相交直线:有且只有一个公共点。(2)平行直线:在同一平面内,没有公共点。(3)异面直线:不在任何一个平面内,也没有公共点。两条异面直线的作图,常借助于辅助平面。
异面直线的判定:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线。