王晋1 , 张勇1,2 , 张祖勋1 , 李晓3 , 陶鹏杰1,4 , 宋孟肖1 1. 武汉大学遥感信息工程学院, 湖北 武汉 430079;2. 地球空间信息技术协同创新中心, 湖北 武汉 430079;
3. 中国天绘卫星中心, 北京 102102;4. 武汉大学资源与环境科学学院, 湖北 武汉 430079基金项目:国家重点研发计划(2017YFB0503004)摘要:无地面控制点(简称无控)区域网平差是实现卫星影像无控测图的一项重要技术,对于境外和外业测控困难区域的测图具有重要意义。
所以, 近年来, 立体卫星影像无控区域网平差逐渐引起了广泛的关注卫星影像无控区域网平差是指在缺少外业控制的条件下, 实现卫星影像定位精度的相对一致性且尽可能地提高对地定位精度无控区域网平差的对地定位精度受到卫星影像质量、初始定位精度、地形起伏等因素的影响。
除此之外, 已有的地理信息数据, 如数字正射影像(digital orthophoto map, DOM)和数字高程模型(digital elevation model, DEM), 也可以作为控制数据, 辅助卫星影像区域网平差[4]。
ICESat卫星是NASA于2003年发射的一颗地球观测卫星, 星上携带有NASA设计的地面高程激光测量系统(geoscience laser altimeter system, GLAS), ICESat卫星兼顾了地形及地面植被高度测量、云层高度及其垂直结构测量、海洋高程测量等科研任务。
虽然ICESat激光高程点具有较高的测量精度, 但是利用其辅助卫星影像区域网平差方面的研究才刚刚起步文献[12]开展了ICESat激光高程控制点自动提取方法的研究, 取得了初步的成果, 能有效保证提取的高程控制点的绝对高程精度。
文献[13-14]讨论了二线阵影像联合激光测距数据进行光束法平差的可行性, 并进行了模拟数据试验, 结果表明, 利用激光测距数据参与二线阵影像光束法平差, 能有效改善航线模型系统变形并保持较小的上下视差。
为验证该方法的有效性和可行性, 本文采用山东全省的天绘一号卫星三线阵影像和ICESat激光测高数据进行了区域网平差试验, 利用外业检查点对其进行精度评定, 并讨论了不同激光高程控制点布设方案对区域网平差结果的影响。
因此, 有必要从庞大的点数据库中提取出适用于高程控制的GLAS激光点文献[12]研究发现, 利用GLAS L14数据记录的激光点质量评价参数(如饱和度改正标记i_satCorrFlg, 反射率参数i_reflctUncor等)和其他地表测量数据(如SRTM DEM, ASTER DEM)组合对GLAS点进行筛选, 可以达到较好的筛选效果。
从2014年起美国陆续向全球用户免费开放30 m分辨率的SRTM DEM数据SRTM 1″, 与SRTM 3″一样, SRTM 1″覆盖了全球56°S-60°N范围, 标称的绝对高程精度为16 m(LE90), 相对高程精度为10 m(LE90), 但是具有更高的分辨率和数据质量[18]。
针对以上问题, 本文采用30 m分辨率的SRTM数据计算得到的地表坡度作为限制条件, 同时根据GLAS本身的质量评价信息进行控制点筛选, 具体流程如图 1所示
最后, 通过GLAS点本身记录的点质量评价信息对剩余的点做进一步筛选, 即可获取较为可靠的高程控制点本文采用上述方法对山东测区的ICESat原始数据进行了可用点提取, 并以1:10 000比例尺的DEM产品为参考, 对提取的可用点进行高程精度评定。
SRTM高差10 9853.6SRTM坡度603343.4大气散射增益304526.2饱和度改正参数183610.6与DEM的高差/m均值0.296中误差1.223表选项 从表 1也可以看出, 利用SRTM坡度条件剔除的比例最高, 达到了43.2%, 因此, 保留的高程点都位于地形平缓的平地区域, 将其作为高程控制点更加合理。
RFM是将像点坐标(Sample, Line)表示为以相应地面点空间坐标(P, L, H)(其中P为纬度,L为经度, H为高程)为自变量的多项式的比值
(1)式中
(2)式中, b0和d0通常为1;(Pn, Ln, Hn)为正则化的地面坐标; (cn, rn)为正则化的影像坐标
(3)式中, LINE_OFF、SAMP_OFF、LONG_OFF、LAT_OFF、HEIGHT_OFF为正则化平移参数; LINE_SCALE、SAMP_SCALE、LONG_SCALE、LAT_SCALE、HEIGHT_SCALE为正则化比例参数。
(4)2.2 模型法区域网平差一般情况下, 卫星影像的RPC参数是由在轨几何标定后的轨道和姿态数据拟合计算获得, 虽然卫星轨道和姿态数据经过在轨几何标定后精度有了很大提高, 但是依然会残留一定的系统误差, 所以由此拟合得到的RPC参数往往也具有系统误差。
(5)式中, Line和Sample是连接点或控制点的像方量测坐标; Line′和Sample′则是根据式(4)计算的连接点或控制点的投影坐标; a0、as、aL、b0、bs、bL为像方仿射变换参数卫星影像立体区域网平差的目的在于:①消除卫星影像立体像对内部各影像之间的上下视差; ②使得不同立体像对之间的同名观测具有相同的空间坐标; ③在有控的条件下, 平差解算的加密点空间坐标与其控制点空间坐标差异性最小。
其原理示意如图 2所示
图 2 卫星影像模型法区域网平差原理示意Fig. 2 The principle of block adjustment based on stereo model of satellite images
如图 2(a)所示, 连接点在模型1和模型2中, 最优交会空间点分别为P1和P2两点平差过程中, 计算P1和P2两点的平均位置P, 并将其作为控制点, 根据式(5)调整每张影像的定向参数(即像方的仿射变换参数, 相当于空间后方交会), 从而使得同名光线相交至点P所在位置。
卫星影像模型法立体区域网平差的流程如图 3所示。
该流程可概括为“空间前方交会”-“均值化连接点地面坐标”-“单片定向”3个关键性步骤, 具体如下:(1) 空间前方交会:以立体模型为单位, 使用影像的原始RPC参数和仿射变换改正参数(每张影像的像方仿射变换改正参数初值为0), 对连接点进行空间前方交会, 计算连接点在每个模型中的空间坐标(本文称为模型坐标)。
将式(3)代入式(1), 然后将其按照泰勒公式展开至一次项, 得到式(6)
(7)(2) 均值化连接点地面坐标:由于不同立体模型的直接对地定位精度不同, 所以步骤(1)计算的同一连接点在不同模型中的前方交会坐标各不相同通过计算连接点在所有立体模型的模型坐标均值, 并将其作为连接点的地面坐标, 从而逐步消除模型坐标的不一致。
在有控的情况下, 通过空间相似变换, 将连接点地面坐标转换为绝对地面坐标由于测区范围较大, 空间相似变换使用地心地固坐标(3) 单片定向:根据式(5)可得单片定向的误差方程式(8), 将步骤(2)得到的连接点作为“虚拟控制点”, 按式(8)逐影像进行单片定向, 计算每张影像的仿射变换改正参数
本文提取ICESat高程控制点的原理如图 4所示
根据以上方法依次处理测区范围内的所有ICESat激光高程点, 得到多个ICESat高程控制点, 重新进行有控条件下的区域网平差, 计算ICESat激光高程点辅助条件下的影像定向参数3 试验数据与结果分析。
天绘一号卫星采用GPS进行定轨, 其中01星与02星采用单频GPS, 定轨精度为2~3 m, 03星采用双频GPS, 定轨精度优于1 m本文试验数据为天绘一号卫星三线阵立体(正视与前后视之间的交会角为25°)影像数据和ICESat/GLAS激光测高数据, 其中影像地面分辨率为5 m, 共2166张(包含01星、02星、03星3颗卫星的数据, 初始定位精度不一致), 组成了722个立体模型。
为评定本文平差方法处理后影像的绝对定位精度, 通过外业GPS测量了96个高精度的野外控制点(平面精度与高程精度均优于0.1 m), 作为检查点使用天绘一号卫星影像和ICESat/GLAS激光高程控制点的地理位置如图 5所示, 其中蓝色方框表示影像中心, 黑色实心点表示激光高程控制点。
图 5 天绘一号卫星影像和ICESat/GLAS激光高程点位分布Fig. 5 The distribution of Mapping Satellite-1 images and ICESat/GLAS laser points
(4) 精度验证:以外业实测控制点作为平差精度评定的检查点, 分别检查无控条件和ICESat激光高程点辅助条件下两种平差模式的高程精度3.3 试验结果及分析3.3.1 ICESat高程控制点辅助区域网平差试验。
图 6 无控情况下检查点高程残差分布Fig. 6 The distribution of vertical errors of check points without ground control points
图选项
图选项 两种情况下检查点的精度比较见表 2。
试验结果表明:(1) ICESat激光高程点辅助区域网平差可显著提高高程定位精度在完全无控条件下, 检查点的平面精度X、Y方向分别为8.45 m和6.86 m, 高程精度为5.88 m; ICESat激光高程点辅助区域网平差后, 检查点平面精度基本保持不变, 高程精度则有显著改善, 提高至2.51 m。
3.3.2 不同ICESat高程控制点布设方案的平差试验采用不同的ICESat激光高程控制点布设方案, 采用23个GLAS条带的激光高程点进行辅助区域网平差试验提取了1839个激光高程点, 垂直条带方向以100 km间隔, 选取9个GLAS条带, 对于每个条带沿轨道方向按不同间隔选取激光高程点, 共选取5个布设方案, 其点位分布情况和平差结果统计见表 3, 高程残差分布见图 8。
表选项
图选项 从上述对比试验可以得出以下结论:(1) 在轨道两端布点时, 全测区高程控制点仅分布在测区边缘, 虽然检查点的高程精度从5.88 m提升至5.05 m, 但是提升幅度不大, 且由于测区内部没有高程控制点, 平差后仍然会出现局部扭曲(图 8(a)中部偏左处红色箭头区域)。
然而, 以上选点方案所能达到的高程精度都不及使用全测区所有的1839个激光高程点进行整体平差的精度, 因此, 建议在实际生产中使用满足质量要求的所有ICESat激光高程点(3) 增加山区激光高程控制点对高程精度有较大改善作用。
方案5在方案4基础上增加了位于山区的激光高程点, 检查点的高程精度由3.46 m提升至3.18 m, 且区域网的局部扭曲得到进一步抑制, 图 8(d)中部偏下区域的最大正误差(最长的红色箭头)在图 8(e)中明显变小。
随着未来ICESat-2卫星和高分七号(GF-7)卫星的发射, 我们将有机会使用更多的激光测高数据和国产高分辨率立体测绘卫星数据进行试验, 以进一步验证和提高本文方法的稳定性作者简介第一作者简介:王晋(1988-), 男, 博士生, 研究方向为航空、航天摄影测量。