最新专刊“国家科学数据中心”联合专刊上线key大数据国家天文台元数据

数据引领创新,科技永续发展。信息时代,数字经济正成为全球经济增长和提质增效的新引擎,重视和发掘大数据价值,已经成为世界各国的共识和战略抉择,科学大数据的建设、管理与共享工作日益引起世界各国的高度重视。科学大数据作为我国战略性资源,是推动数字经济和实体经济融合发展的基石。在国家大力开展大数据战略的进程中,系统推进科学大数据建设,对推动科技进步、促进经济社会发展、维护国家安全作用巨大。

孤举者难起,众行者易趋。为进一步明晰科学大数据战略,推动我国各领域科学数据流动融合、促进科学大数据产业发展,倡导以大数据驱动的科学研究模式,《大数据》期刊、《数据与计算发展前沿》期刊、《中国科学数据(中英文网络版)》、《中国科技资源导刊》联合首批二十个国家科学数据中心出版联合专刊,共同组织和邀请多领域专家聚焦于产业政策、技术发展、数据汇集管理、数据开放共享等领域,围绕国家战略安全和经济社会发展需求,从不同角度进行深入研究和分析。联合专刊期待能够以此为契机与读者一道探寻国家科学大数据发展路径,为建设新时代数字强国贡献力量。

国家科学数据中心联合专刊总序

在数字经济成为重塑全球经济结构、改变全球竞争格局的关键力量的当下,数据正在成为关键生产要素。大数据时代,科技创新越来越依赖于对科学数据的分析挖掘和综合利用,以海量科学数据分析应用为代表的数据密集型科研范式应运而生,成为支撑科技创新和推动国家进步的重要力量。党和国家始终高度重视科学数据建设发展。2018年3月,国务院办公厅印发《科学数据管理办法》,对科学数据建设和发展进行战略部署,为我国科学数据工作指明了方向,为科学数据研究提供了坚实的政策基础。

2019年,科技部、财政部深入贯彻落实《科学数据管理办法》相关要求,在原有国家科技资源共享服务平台基础上优化调整形成20个国家科学数据中心,成为我国科学数据管理、应用和支撑关联学科发展的重要载体。国家科学数据中心组建以来,在若干重要领域持续开展科学数据汇聚,整合重要科学数据资源建成了一批较为规范和系统的科学数据库。持续加强科学数据的分析挖掘与应用,数据服务能力不断增强,积极探索跨数据中心数据联合分析与服务,初步形成了规范安全和交互协同的科学数据应用生态。国家科技计划项目形成的科学数据源源不断汇入相关领域国家科学数据中心,科学数据资源标识体系初步建成,科学数据开放共享的能效逐步显现,国家科学数据中心的影响力稳步提高。

站在“两个一百年”的历史交汇点,面对百年变局和世纪疫情,科学数据作为国家战略科技资源,在支撑创新驱动发展战略实施,推动经济体系优化升级和促进产业融合,抗击疫情保障民生和推进生态文明建设等方面作用更加凸显。为系统呈现我国科学数据研究进展和应用成果,促进科学数据资源的有效管理、共享共用和分析挖掘,提高科学数据应用服务能力,《大数据》期刊、《数据与计算发展前沿》期刊、《中国科学数据(中英文网络版)》、《中国科技资源导刊》联合国家科学数据中心,合作出版“国家科学数据中心”联合专刊,分别从政策、技术、数据、开放共享最佳实践等不同层面进行深入研讨。

联合专刊从2021年6月开始正式征稿,各国家科学数据中心积极组稿撰稿,联合专刊委员会与四本期刊编辑部积极推进征稿工作,顺利完成专刊出版,共收录了48篇文章。期待能以此为契机,共同推进科学数据领域的知识传播和学术交流,并为合理配置和有效运用国家资源、促进国家综合国力发展、维护国家安全贡献联合力量。

国家科技基础条件平台中心主任

《数据与计算发展前沿》此次专刊邀请到国家天文科学数据中心常务副主任崔辰州研究员担任特邀执行主编。

特邀执行主编

崔辰州 研究员

中国科学院国家天文台研究员,博士,国家天文科学数据中心常务副主任,虚拟天文台研究团队首席科学家。兼任国际天文学联合会数据与文献委员会主席,中国天文学会信息化工作委员会主任,外语中文译写规范部际联席会议专家委员会(国家语委)、全国名词委科技新词工作委员会委员,《IVOA NEWSLETTER》(国际虚拟天文台联盟简报)《天文研究与技术》《大数据》编委,国际虚拟天文台联盟执行委员,美国天文学会万维望远镜(WWT)顾问委员会委员。研究领域包括虚拟天文台、天文信息学、基于科学数据的教育科普、网格技术、天文数据库系统、银河系结构与演化等。

专刊目录

数据工程学建设思考与实践

张耀南*

FAST科学观测项目管理信息系统

韩军*,樊东卫,陶一寒,许允飞,李珊珊,米琳莹,李长华,崔辰州

高能物理科学数据中心智能运维系统

胡庆宝*,郑伟,王佳荣,汪璐, 颜田

多源异构作物组学数据融合方法研究——以高粱为例

张翔鹤,闫燊,樊景超*

新一代“生态网络云”大数据平台的设计与实现

唐新斋,陈昕,何洪林*,郭学兵,苏文,谢传节,沈志宏,张黎,任小丽,侯艳飞,刘峰

科学数据中心间互操作模式研究

卢逸航,李国庆,陈祖刚*

对地观测知识枢纽研究进展

李进,陈祖刚*,李国庆

国家高能物理科学数据中心分布式数据处理平台

石京燕*,黄秋兰,汪璐,李海波,杜然,姜晓巍,胡庆宝,郑伟,闫晓飞,张玄同

国际GNSS监测评估系统数据采集与服务的研究及应用

张喆*,杨海彦,王海雪,王格,何战科,徐永亮,孙保琪,杨旭海

数据工程学建设思考与实践

张耀南1,2,3*

1.国家冰川冻土沙漠科学数据中心,甘肃 兰州 730000

2.中国科学院西北生态环境资源研究院,甘肃 兰州 730000

3.甘肃省资源环境科学数据工程技术研究中心,甘肃 兰州 730000

摘 要

【目的】尽管数据科学已经可以处理大量的数据并解决了很多问题,正在改变着科研、企业运作和社会治理模式,但数据科学成果存在难以工程化的局限性,要将数据资产及其隐含价值有效转化为服务、决策、产品,形成数字经济,还需要建立数据工程学来支持对数据实施工程活动,实现数据驱动的数据价值转化,服务日常工作,形成数字经济。

【方法】本文引入工程学思想,将伴随数据科学诞生的狭义数据工程推广为广义数据工程,论述了数据工程学建立的必要性,参考土木工程学科建设及工程学科应具备的特征,分析了基于数据物质基础的数据工程学知识特征,给出了数据工程学的概念、理论基础、研究内容、研究框架和主要技术体系,并通过两个数据工程应用案例说明建立数据工程这一新方法论的必要性。

【结论】数据工程学具备了数据物质基础的独特知识体系,具备了综合数学、电子与信息、计算机、数据科学以及各领域学科的特殊研究方法,数据工程学建设的物质、理论、技术、需求等基础已经具备,建立数据工程学支持将数据资产转化为工程应用并形成数字经济非常迫切。

关键词:狭义数据工程;广义数据工程;数据工程学;数据科学;数字经济

Data Engineering Discipline Construction and Practice

ZHANG Yaonan1,2,3*

1. National Cryosphere Desert Scientific Data Center, Lanzhou, Gansu 730000, China

2. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China

3. Gansu Data Engineering and Technology Research Center for Resource and Environment, Lanzhou, Gansu 730000, China

Abstract

[Objective ]While data science can handle a large amount of data and solve a lot of problems, it is changing the models of scientific research, enterprise operation, and social governance. Owing to the difficulty in data science engineering, it is necessary to establish a data engineering discipline to convert the data assets and their intrinsic value to effective services, decision making, and data products to enabledigital economy.

[ Methods ]This paper introduces the idea of engineering, extends the concept of narrow data engineering to broad data engineering, discusses the necessity of establishing the discipline of data engineering, and analyzes the characteristics of the data engineering knowledge based on data material basis by referring to the characteristics of the civil engineering discipline and its construction. This paper presents the concept, theoretical basis, research content, research framework, and main technical system of the data engineering discipline, and illustrates the necessity of establishing a new methodology of data engineering through two data engineering application cases.

[Conclusions]The data engineering discipline is of a unique knowledge system based on data matters and special research methods that integrate mathematics, electronics, information science, computer science, data science, and some other disciplines. The material, theoretical, technical, and demand basis for data engineering construction have been established. It is urgent to establish a data engineering support to transform data assets into engineering applications to enable the digital economy.

Keywords: narrow data engineering; generalized data engineering; Data Engineering Discipline; data science; the digital economy

FAST科学观测项目管理信息系统

韩军1,2*,樊东卫1,2,陶一寒1,2,许允飞1,2,李珊珊1,2,米琳莹1,2,李长华1,2,崔辰州1,2

1.中国科学院国家天文台,北京 100101

2.国家天文科学数据中心,北京 100101

摘 要

【应用背景】500米口径球面射电望远镜(FAST)是国家“十一五”重大科技基础设施建设项目。随着FAST的落成,如何对外提供观测服务,成为FAST必须要解决的关键需求。

【方法】文章首先介绍了FAST对外开放的技术需求和面临的挑战,然后介绍信息系统的框架结构及功能模块,主要包括用户管理、内容管理、观测申请评审、项目管理、数据中心五个核心模块及辅助模块。

【结论】经过用户实际使用,FAST科学观测项目管理信息系统的应用效果符合预期,有效满足了FAST对外开放的功能需要,提升了观测运行效率。

关键词:500米口径球面射电望远镜;信息系统;科学观测;数据中心

The Project Management Information System

for FAST Scientific Observation

HAN Jun1,2*, FAN Dongwei1,2, TAO Yihan1,2, XU Yunfei1,2, LI Shanshan1,2, MI Linying1,2,

LI Changhua1,2, CUI Chenzhou1,2

1.National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

2.National Astronomical Data Center, Beijing 100101, China

Abstract

[Background]Five-hundred-meter Aperture Spherical radio Telescope is the Major science and technology infrastructure construction project during the 11th Five-Year Plan period. With the completion of FAST, how to provide observation service for scientists has been the key issue to solve.

[Methods]The article first introduces technical requirements and the challenges for international open faced by FAST and then presents the system framework and function module, including user management, content management, observation application and review module, project management, data center, and auxiliary module.

[Conclusions]Through practical use, it has been proved that this system can effectively meet the expected goals and the functional needs, and makes observation more efficient.

Keywords: FAST;information system; scientific observation; data center

高能物理科学数据中心智能运维系统

胡庆宝1,2*,郑伟1,2,王佳荣1,2,汪璐1,2, 颜田1,2

1.中国科学院高能物理研究所,北京 100049

2.国家高能物理科学数据中心,北京 100049

摘 要

【目的】高能物理科学数据中心运维环境复杂,监控工具种类繁多,功能相对重叠且监控数据无法互通,日常运维面临巨大的挑战。为高效运用监控数据,提高数据中心运维能力,本文实现了高能物理科学数据中心智能运维系统。

【方法】本文结合工业大数据技术、机器学习技术和数据中心运维需求,设计了通用的数据中心运维技术架构。介绍监控数据采集、分析、存储、共享、可视化等系统核心功能及其实现方式,以及依托该系统在数据中心数据存储、计算服务、网络安全等日常运维的具体应用效果。

【结果】本文设计的运维框架,在高能物理科学数据中心日常运维中得到了成熟的应用和实践,提升了数据中心运维管理能力。

【结论】智能运维系统在高能物理科学数据中心的应用,加速了运维监控从数据持久化、统一化到数据业务化、生态化的价值演进,实现了基于数据驱动的数据中心智能化运维生态。

关键词:大数据;数据中心运维;智能运维系统

Intelligent Operation and Maintenance System for High Energy Physics Science Data Center

HU Qingbao 1,2*, ZHENG Wei 1,2, WANG Jiarong 1,2, WANG Lu 1,2, YAN Tian 1,2

1. High Energy Physics Institute, Chinese Academy of Sciences, Beijing 100049, China

2. National High Energy Physics Science Data Center, Beijing 100049, China

Abstract

[Objective]The High-energy Physical Science Data Center has a complex operation and maintenance environment. Because the monitoring tools are various, the functions are relatively overlapped, and the monitoring data cannot be interoperable, the daily operation and maintenance are facing many challenges. To make full use of the monitoring data and improve the operation and maintenance capabilities of the data center, this paper implements an intelligent operation and maintenance system for the high-energy physical science data center.

[Methods]This article combines industrial big data technology, machine learning technology, and data center operation and maintenance requirements to design a general data center operation and maintenance technology architecture. It introduces the core functions of the monitoring data collection, analysis, storage, sharing, visualization, etc., and their implementation methods. The application effects of this system in the direction of data center data storage, computing services, and network security operation and maintenance are also introduced.

[Results]The operation and maintenance framework designed in this paper has been maturely applied and practiced in the daily operation and maintenance of the High-energy Physical Science Data Center and has improved the data center operation and maintenance management capabilities.

[Conclusions]The application of intelligent operation and maintenance systems in the High-energy Physical Science Data Center has enhanced the value of operation and maintenance data and realized the data-driven intelligent operation and maintenance ecology of data centers.

Keywords: big data; data center operation and maintenance; intelligent operation and maintenance system

多源异构作物组学数据融合方法研究

——以高粱为例

张翔鹤1,2,闫燊1,2,樊景超1,2*

1. 中国农业科学院农业信息研究所,北京 100081

2. 国家农业科学数据中心,北京 100081

摘 要

【目的】作物组学研究是农业作物科学发展的未来研究趋势,在数据密集型科学研究背景下,作物组学数据存在数据量大、来源多、结构复杂的特点,对多源异构作物组学数据的融合有利于优质作物种质资源的挖掘,助力农业科技发展。

【方法】运用文献调查和网络数据收集法,对当前作物组学数据的分布和数据组织结构进行了分析,得出了多组学数据资源的主要特征;以高粱为例通过语义分析和文献查询方法,优化设计得到新的高粱多组学数据标准元数据,并开发脚本实现了不同数据库元数据到标准元数据的映射和转换,基于元数据实现了对多源数据的融合;通过整合mapping、变异分析、DEG计算等多种生物信息学方法,实现了对异构组学数据的融合。

【结果】形成了高粱多源异构组学数据融合方法,能够实现对NCBI、EMBL、PlantGDB、国家农业科学数据中心等数据库中基因组、转录组、代谢组、表型组数据的融合。

【局限】需进行数据源、标准元数据的针对性开发,以满足在其它作物中推广的实际需求。

【结论】本文基于元数据和生物信息学方法,开发得到了作物多源异构组学数据的融合方法,具有普适性,可在其它作物品种中推广应用。

关键词:组学数据;多源异构;数据融合;高粱

Study on Omics Data Fusion Method of Heterogeneous Crops from Multiple Sources — Take Sorghum Bicolor as An Example

ZHANG Xianghe1,2, YAN Shen1,2, FAN Jingchao1,2*

1. Agricultural Information Institute of CAAS, Beijing 100081, China

2. National Agriculture Science Data Center, Beijing 100081, China

Abstract

[Objective]Crop omics study is the trend of the research on agricultural crop science development. Under the background of data-intensive scientific research, crop omics data ehxibit the characteristics of large amounts, multiple sources, and complex structures. Fusion of multi-source heterogeneous crop omics data is beneficial to excavate germplasm resources of high-quality crops, support agricultural science and technology development.

[Methods]Literature survey and network data collection were used to analyze the distribution and organization structure of crop omics data, and the main characteristics of multi-omics data resources were obtained. Taking sorghum bicolor as an example, the new standard metadata of multi-omics data was optimized by semantic analysis and literature query, and the script was developed to realize the mapping and transformation from metadata of different databases to the standard metadata. Then the fusion of multi-source data was realized based on metadata. By integrating a variety of bioinformatics methods such as mapping, mutation analysis, and DEG calculation, the heterogeneous omics data was fused.

[Results]A multi-source heterogeneous omics data fusion method for sorghum bicolor was formed. It can realize the fusion of genome, transcriptome, metabolome, and phenotypic data in NCBI, EMBL, PlantGDB, National Data Center for Agricultural Sciences, and other databases.

[Limitations]Targeted development of data sources and standard metadata is needed to meet the actual needs of promotion in other crops.

[Conclusions]Based on metadata and bioinformatics methods, this paper develops a fusion method of crop multi-source heterogeneous omics data, which is universal and can be applied to other crop varieties.

Keywords: omics data; multi-source isomerism; data fusion; sorghum bicolor

新一代“生态网络云”大数据平台的设计与实现

唐新斋1,5,陈昕2,何洪林1,3,5,郭学兵1,5,苏文1,5,谢传节4,沈志宏2,张黎1,3,5,任小丽1,3,5,侯艳飞1,5,刘峰2

1. 中国科学院地理科学与资源研究所,生态系统网络观测与模拟重点实验室,北京 100101

2. 中国科学院计算机网络信息中心,北京 100083

3. 中国科学院大学资源与环境学院,北京 100049

4. 中国科学院地理科学与资源研究所,资源与环境信息系统国家重点实验室,北京 100101

5. 国家生态科学数据中心,北京 100101

摘 要

【目的】构建高效的信息化云平台,是实现多源异构生态大数据仓储与开放共享的重要支撑手段。

【方法】结合生态大数据的演变、国家科学数据政策的影响,按照科学数据全生命周期管理过程,分析了国家生态科学数据中心现有信息化平台面临的问题和挑战,尝试采用领域驱动设计方法,开展生态科学数据汇聚微服务拆分。

【结果】基于“开放汇聚、协同管理、智慧服务”理念,提出了新一代“生态网络云”大数据平台(Eco-Cloud)的总体架构设计,结合当前需求从多源数据汇交、统一存储管理、数据加工与挖掘分析、服务与展现四个层次给出了主要系统组成及其应用场景。

【结论】新平台有助于推动生态科学数据多源开放汇聚、资产化管理,提升生态科学数据分析能力与共享服务水平。

关键词:生态网络云;科学数据中心;全生命周期管理;数据汇聚;资源服务

Design and Implementation of a New Eco-Cloud Platform for National Ecosystem Science Data Center

TANG Xinzhai1,5, CHEN Xin2, HE Honglin1,3,5, GUO Xuebing1,5, SU Wen1,5, XIE Chuanjie4, SHEN Zhihong2, ZHANG Li1,3,5, REN Xiaoli1,3,5, HOU Yanfei1,5, LIU Feng2

1. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China

3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

4. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

5. National Ecosystem Science Data Center, Beijing 100101, China

Abstract

[Objective]Information cloud platform plays an important role supporting multi-source heterogeneous ecosystem scientific data storage and open sharing.

[Methods]We analyze the problems and challenges faced by the current information platform of the National Ecosystem Science Data Center in view of the evolution of ecosystem scientific data and the impact of national scientific data policies. A domain-driven design method is adopted to carry out microservice recognition.

[Results]Based on the concept of "Open convergence, Collaborative management, and intelligent services", we propose the design of a new ecosystem network cloud platform (Eco-Cloud), and present main system composition and application scenarios from four levels: multi-source data convergence, unified storage management, data processing and mining, sharing and presentation.

[Conclusions]The new platform will help promote the level of ecological scientific data convergence, management, analysis, and sharing.

Keywords: eco-cloud platform; science data center; life cycle management; data convergence; resources sharing

科学数据中心间互操作模式研究

卢逸航1,2,李国庆1,3,陈祖刚1,3*

1.中国科学院空天信息创新研究院,北京 100094

2.中国科学院大学,北京 100049

3.国家对地观测科学数据中心,北京 100094

摘 要

【目的】为了满足学科交叉融合对科学数据互操作的需求,解决科学数据中心资源重复存储问题,促进跨学科数据资源的有效利用。

【方法】本文调研了现有的科学数据互操作技术与模式、国内外科学数据中心间互操作的现状,分析了各种互操作模式与技术适用的条件以及我国科学数据中心的特点。

【结果】最终,提出了两大类共7种科学数据中心间互操作的模式,即基于元数据收割的转接板模式、基于元数据框架的元数据信息交换站模式、基于多领域本体映射的关联数据模式、元数据映射模式、本体模式、现有系统再整合模式和统一信息化系统模式,同时提供了我国科学数据中心互操作模式的实施建议。

【结论】本研究提出的科学数据中心互操作模式具有可落地性和可实施性,能大大促进交叉学科科学数据资源的共享与利用,具有非常重要的推广意义和价值。

关键词:科学数据互操作;科学数据中心;互操作模式;元数据互操作;映射;受控词表

Research on Interoperability Models between Scientific Data Centers

LU Yihang 1,2, LI Guoqing 1,3, CHEN Zugang 1,3*

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. The University of Chinese Academy of Sciences, Beijing 100049, China

3. China National Earth Observation Data Center, Beijing 100094, China

Abstract

[Objective]This paper aims to meet the need for data interoperability in cross-disciplinary scientific research, to solve the problem of duplication of data resource storage, and to promote the effective use of interdisciplinary data resources.

[Methods]This paper investigates the existing scientific data interoperability technologies and models and the current status of interoperability between scientific data centers at home and abroad. The characteristics of China's scientific data centers and the applicable conditions of various interoperable models and technologies are analyzed.

[Results]Seven interoperability models are proposed, including the switching-across model based on metadata harvesting, the metadata registry model based on the metadata framework, the Linked Data model based on Multi-domain ontology mapping, the metadata mapping model, the ontology-based model, the existing system re-integration model and the unified information system model. Additionally, we provide recommendations for implementing the interoperability model of the scientific data centers in our country.

[Conclusions]The interoperability models between scientific data centers proposed in this study are implementable, which can greatly promote the data sharing and utilization of cross-disciplinary scientific data resources and have great significance and value.

Keywords: scientific data interoperability; scientific data center; interoperability model; metadata; mappings; controlled vocabularies

对地观测知识枢纽研究进展

李进2,陈祖刚1*,李国庆1

1.中国科学院空天信息创新研究院,北京 100094

2.郑州大学,河南 郑州 450000

摘 要

【目的】对地观测领域仅共享科学数据还不能为用户直接提供解决问题的方案,还需要实现面向问题或者应用提供知识共享支持,对地观测知识枢纽的建立能有效支持共享对地观测领域的知识要素,促进对地观测知识(特别是模型、算法表达的隐性知识)的重用,提升应用对地观测知识解决重大问题的能力。

【文献范围】本文通过文献调查,获取了知识枢纽以及对地观测领域知识枢纽的主要文献。

【方法】采用文献分析法,分析了对地观测知识枢纽的概念内涵、实现技术和方法。

【结果】总结了对地观测知识枢纽的概念内涵、主要内容、特点和功能,归纳了对地观测知识枢纽的实现方法,展望了对对地观测知识枢纽的应用。

【局限】由于目前尚无公开可用的对地知识枢纽系统,可能对目前知识枢纽的具体实现技术表述不全。

【结论】对地观测知识枢纽是对地观测数据共享的发展新趋势,能有效促进对地观测知识重用,将成为未来对地观测领域广泛应用的知识共享基础设施。

关键词:知识枢纽;对地观测;知识共享

Research Progress of Earth Observation Knowledge Hub

LI Jin2, CHEN Zugang1*, LI Guoqing1

Abstract

[Objective]The sharing of scientific data in the field of earth observation cannot directly provide users with solutions to problems, it is necessary to provide knowledge sharing support for problems or applications. The establishment of an earth observation knowledge hub can effectively support the sharing of knowledge elements in the field of earth observation, promote the reuse of earth observation knowledge (especially the implicit knowledge expressed by models and algorithms), and improve the ability to apply earth observation knowledge to solve major problems.

[Coverage]This paper obtains the literature on knowledge hub and earth observation field knowledge hub through the literature survey.

[Methods]The concept connotation, implementation technology, and method of earth observation knowledge hub are analyzed utilizing the literature analysis method.

[Results]The concept, main content, characteristics, and functions of the earth observation knowledge hub are summarized. The realization methods of the earth observation knowledge hub are presented. The application of the earth observation knowledge hub is forecasted.

[Limitations]Since there is no publicly available knowledge hub system, the specific realization technology of the knowledge hub may not be fully described.

[Conclusions]Earth observation knowledge hub is a new development trend of earth observation data sharing, which can effectively promote the knowledge reuse of earth observation and will become a knowledge sharing infrastructure widely used in the field of earth observation in the future.

Keywords: knowledge hub; earth observation; knowledge sharing

国家高能物理科学数据中心分布式数据处理平台

石京燕*,黄秋兰,汪璐,李海波,杜然,姜晓巍,胡庆宝,郑伟,闫晓飞,张玄同

中国科学院高能物理研究所,北京 100049

摘 要

【方法】文章介绍了国家高能物理科学数据中心分布式数据处理平台的总体构成、运行模式和智能运维等方面的关键技术。通过分析高能物理实验数据处理的计算特点与实际需求,介绍了数据中心“一平台多中心”的数据处理平台建设思想,阐述了平台为高能物理实验提供的跨地域资源共享、高性能海量数据访问以及用户实时交互服务等技术方案设计与实现。

【结论】国家高能物理科学数据中心分布式数据处理平台已经成为高能物理学科的重要基础设施和组成,是学科融合、开展新研究方法的主要场所,满足了粒子物理、理论物理、空间天文、射线学科、加速器设计等科研领域的数据处理需求。

关键词:分布式数据处理平台;跨地域资源共享;高性能计算;高通量计算

Distributed Data Processing Platform of National High Energy Physics Data Center

SHI Jingyan*, HUANG Qiulan, Wang Lu, LI Haibo, DU Ran, JIANG Xiaowei, HU Qingbao, ZHENG Wei, Yan Xiaofei, ZHANG Xuantong

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Abstract

[Objective]This paper introduces the distributed data processing platform of the National High Energy Physics Data Center (NHEPDC). It also provides a reference for data processing in the HEP and related science experiments.

[Methods]This paper introduces the composition, key technologies, and intelligent operation of the distributed data processing platform of NHEPDC. By analyzing the characteristics and actual requirements of high energy physics data processing, the paper introduces the strategy of "one platform and multiple centers" for construction of the distributed data processing platform in the data center and elaborates the realization of cross-regional resource sharing, high performance data access, and user interaction data processing.

[Results]The paper enumerates two examples of support for high-energy physics experiments on the distributed data processing platform of NHEPDC to facilitate the acquisition of scientific research results.

[Conclusions]The distributed data processing platform of NHEPDC has become an important infrastructure and composition of high energy physics, the main place to integrate new research methods. It meets the computing needs of particle physics, theoretical physics, space astronomy, ray science, accelerator design, and other scientific research fields.

Keywords: distributed data processing platform; cross-regional resource sharing; high performance computing; high throughput computing

国际GNSS监测评估系统数据采集与服务的研究及应用

张喆1,2,3*,杨海彦1,2,3,王海雪1,2,3,王格1,2,3,何战科1,2,3,徐永亮1,2,3,孙保琪1,2,3,杨旭海1,2,3

1.中国科学院国家授时中心,陕西 西安 710600

2.中国科学院精密导航定位与定时技术重点实验室,陕西 西安 710600

3. 中国科学院大学,北京 100049

摘 要

【目的】国际GNSS监测评估系统(international GNSS Monitoring and Assessment System, iGMAS) 通过布设全球GNSS跟踪站网,对全球四大卫星导航系统运行状况和主要性能指标进行监测和评估,由全球跟踪站网、数据中心等组成。

【方法】全球跟踪站网主要完成原始观测数据采集,包括:导航卫星码伪距、载波相位、多普勒等,并发送到数据中心。数据中心收集跟踪站网的标准格式观测数据,对原始数据进行质量检查,并分类存储和备份,同时接收分析中心和产品综合中心数据处理后生成的轨道、钟差、大气等精密产品,并通过FTP、WEB等多种手段以标准数据格式提供GNSS数据和产品的服务。

关键词:北斗;全球卫星导航系统;国际GNSS监测评估系统;数据采集;数据服务

Research and Application of iGMAS Data Collection and Service

ZHANG Zhe1,2,3*, YANG Haiyan1,2,3, WANG Haixue1,2,3, WANG Ge1,2,3, HE Zhanke1,2,3, XU Yongliang1,2,3, SUN Baoqi1,2,3,YANG Xuhai1,2,3

1. National Time Service Center, Chinese Academy of Sciences, Xi’an, Shaanxi 710600, China

2. Key Laboratory of Precise Positioning and Timing Technology, Chinese Academy of Sciences, Xi’an, Shaanxi 710600, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

[Objective]The international GNSS Monitoring and Assessment System (iGMAS) monitors and evaluates the operation status and performance of the world’s four major satellite navigation systems through the deployment of a global tracking station network. It is composed of a global tracking station network, data centers, etc.

[Methods]The global tracking station network is responsible for the collection and preprocessing of the observation data from the navigation satellites, such as code pseudo range, carrier phase, and Doppler data, and transmits the data to the data center. The data center collects the standard format observation data of the tracking station network and performs quality inspections, classification, storage, and backup. At the same time, it receives precise products such as orbit, clock offset, atmosphere corrections processed by the analysis center and product service center. It provides standard format data and products through a variety of methods, such as FTP and WEB.

[Results]The data and products have been applied in many fields such as GNSS monitoring and evaluation, precise time and frequency field, geodynamics, atmospheric science, precise surveying, and mapping.

Keywords: Beidou; GNSS; iGMAS; data collection; data service

中国虚拟天文台(China-VO)是以国家天文台为代表的中国天文界及合作伙伴共同打造的一个网络化科学研究和科普教育平台。它架构在国家天文科学数据中心雄厚的数据资源基础之上,得到中科院、科技部、国家基金委、北京科委等机构的资助,以及中国科技云、阿里云、微软研究院、浪潮集团、中科曙光、锐捷网络等合作伙伴的大力支持。

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

THE END
0.国家冰川冻土沙漠科学数据中心11月15-16日,由中国科学院西北生态环境资源研究院国家冰川冻土沙漠科学数据中心、同济大学创新创业学院主办,甘肃省科学数据总中心、中国环境科学学会环境可持续性科学专业委员会、国际地理信息学院协办的“International Symposium on AI for Data Science and Technology (Environment Resources) ”AI赋能的数据科学与技术(jvzq<84yyy4cfl3ce0io1
1.国家科学数据中心详情简介:国家冰川冻土沙漠科学数据中心,依托中国科学院西北生态环境资源研究院,联合了31家机构的47个野外台站,重点围绕冰川、冻土、沙漠、积雪、黄土、灾害及其作用区域科学数据开展数据资源建设、管理、共享、服务、应用和加工,开展数据工程防灾减灾技术体系研发和应用,发展人工智能地学大数据应用理论方法,开展地学专题数据产品jvzquC41guijgwhg0qxh0ls1fczb/ljpvgx0fnycknEptpNf?;hd2?:4h2jdg;>:45i1eB=64262cn=;2
2.国家冰川冻土沙漠科学数据中心202312月16日,中国科学院西北生态环境资源研究院国家冰川冻土沙漠科学数据中心2023-2024年度第四届专家委员会成功举办,专家委员会主任、中国科学院院士秦大河,中国工程院院士郭仁忠,国家科技图书文献中心副主任郭志伟等16位专家委员会成员和来自全国各地的70余名专家学者参会。西北研究院副院长康世昌、重大任务处处长陈拓等作为jvzq<84yyy4m|k3ecu4dp8p{l|532;9341z32;9344<`9>6296;/j}rn
3.西北研究院国家冰川冻土沙漠科学数据中心发布全球冰冻圈研究引擎近日,在第三届全国冰冻圈科学大会上,中国科学院西北生态环境资源研究院国家冰川冻土沙漠科学数据中心发布了“全球冰冻圈研究引擎(Global Cryosphere research Engine,GCE)”。GCE是基于国家重点研发计划“冰冻圈大数据挖掘分析关键技术及应用”研究产出的大数据挖掘分析云平台,对标谷歌地球引擎(GEE)并突破GEE在观测数据、物理jvzq<84yyy4oknjt0egt0ls1zyju1t~fv1814>561v814>5625e87A=9744ivvq
4.我院获得“国家冰川冻土沙漠科学数据中心”数据共建优秀奖2024年12月16日,“国家冰川冻土沙漠科学数据中心”在海南陵水召开第四届专家委员会。中国科学院院士、中国科学院西北生态环境资源研究院研究员秦大河,中国工程院院士、深圳大学郭仁忠及来自全国20多个科研院校的50余名专家学者参加了此次会议。在本次会议上,我院获得“国家冰川冻土沙漠科学数据中心”数据共建优秀奖。我院 jvzquC41yy}/j}z0gf{/ew4uez04976138368h825;b5<7;875qcpjo0jzn
5.中国科学院冰川冻土沙漠科学数据中心启动会在天水召开(图)2023年6月2日,国家冰川冻土沙漠科学数据中心2021-2022年度总结会、第三届专家委员会暨中国科学院冰川冻土沙漠科学数据中心启动会,以“线下+线上”方式在甘肃天水召开。 会议邀请秦大河院士、程国栋院士、王家耀院士、崔鹏院士、郭仁忠院士、中国科学技术大学王东进(原)副校长、三峡大学田斌书记、陕西师范大学董治宝副校长、jvzq<84yyy4ukjsujwo/exr0ep5og€x1vkgouqzk146359;252?59=:::6;80qyo
6.兰州文理学院旅游学院赴国家冰川冻土沙漠科学数据中心考察交流7月10日,兰州文理学院旅游学院院长高亚芳、副院长杨雪梅率队赴中国科学院西北生态环境资源研究院国家冰川冻土沙漠科学数据中心考察学习。中心主任张耀南研究员全程陪同并系统介绍中心发展历程,通过整合47个野外台站构建"观测-模型-应用"三级数据链,在灾害应急响应中发挥关键作用,截至2025年,已建成覆盖全球关键区域的3875个数jvzquC41n{~z0uzcu0kew7hp146378593;5d4<<3c3877B;1rcmfo7mvo
7.国家冰川冻土沙漠科学数据中心莅临中科星图开展“数据工程与应急张耀南主任围绕国家冰川冻土沙漠科学数据中心、地学大数据资源建设及共享服务、数据工程学的探索及应用示范三大部分进行了分享。 国家冰川冻土沙漠科学数据中心围绕资源收集与保存、资源挖掘与应用、科技计划形成的科技资源汇交、开放共享与服务、国内外动态监测、国际交流与合作、共性技术研发与资源研制等任务开展工作,形成了全jvzquC41v071lzpc0eun0ls1rkj`5A6632=847xjvor
8.山地区天空地一体化综合监测网专题生成的祁连山地区多源、多尺度、多要素的综合监测数据集将提升“山水林田湖草沙”系统的综合监测能力,助力祁连山地区生态环境集成分析与评估,为祁连山地区生态保护与修复、国家公园建设提供科学支撑。祁连山地区天空地一体化综合监测网的构建和运行是在北京师范大学刘绍民教授主持的中国科学院A类战略性先导科技专项“泛第jvzquC41fczb0}ufe0gd0ls1|j3icwx1vqvje8vnu
9.数字媒体学院(计算机学院)一行赴国家冰川冻土沙漠科学数据中心2025年9月30日下午,数字媒体学院一行前往中国科学院西北生态环境资源研究院,与国家冰川冻土沙漠科学数据中心主任张耀南、副主任敏玉芳及核心团队开展专题交流,双方重点围绕科研项目协同、数据训练及标注合作深入探讨。​ 交流中,张耀南重点提及中心在数据训练、冰冻圈大模型研发中的核心需求,寒区数据标注面临多模态融合难、jvzquC41uo~z0uzcu0kew7hp14637862325d49<3c3895?=1rcmf0qyo
10.20个国家科学数据中心(中)国家材料腐蚀与防护科学数据中心拥有32个国家级野外试验站,能进行材料、产品(零配件、整机、整车等)和装备的环境腐蚀(老化)野外暴露试验,从而对材料的环境适应性进行评估、失效分析和寿命评估,同时为材料的选材和施工设计、材料腐蚀防护提供成套技术服务。 11、国家冰川冻土沙漠科学数据中心平台 网址:httpjvzquC41dnuh0lxfp0tfv8xkoalbtrx1ctzjeuj1fgzbkux135?6;@=:6
11.国家青藏高原科学数据中心数据集摘要 青藏高原光学仪器遥感1km积雪覆盖数据集(1989-2018)基于星载光学仪器观测数据云雪判识方法制作,覆盖时间从1989年到2018年(每年1-4月和10-12月两个时段),时间分辨率为逐日,覆盖范围为青藏高原(17°N -41°N,65°E -106°E),采用等经纬度投影,空间分辨率为0.01°×0.01°。数据集以日产品表征了卫星jvzquC41fczb0}ufe0gd0ls1|j3icwx1fczb1oj7h3k1d6;9;935dmg51
12.西北研究院国家冰川冻土沙漠科学数据中心主任招聘启事岗位列表粉笔职位表信息检索库-西北研究院国家冰川冻土沙漠科学数据中心主任招聘启事岗位列表-西北研究院国家冰川冻土沙漠科学数据中心主任招聘启事-西北研究院jvzquC41urg/hnsdk0ipo8ucig5qq|nvkqtt1=465;?72Higrcxuonsv?'K9'J:'DH+F7.=E';=&G@*C2'?5'N<'C;+C8.J;';?&C;
13.超全!工作学习中常用的遥感、地理、生态等数据下载平台汇总本篇文章汇总国家级数据中心(平台/系统)66个 涉及的行业有地质类、农业、土壤、林草 生态、气象、地震、冰川、冻土、沙漠 航空航天、天文、卫星、遥感、社会等等 对每个平台再以名称、数据类别 获取方式、网址链接四个方面列出 本文由地质掘墓人费心整理 1.中国科学院资源环境数据中心 数据:拥有丰富的数据集(库) 获jvzquC41yy}/f‚jiu4dqv4j/pj.3<90jvsm
14.十大好用的地理学习网站地理信息网站有哪些地理专业网站大全→2、国家冰川冻土沙漠科学数据中心 中国科学院主管 专业地理网站排名前十,以中科院寒区旱区环境与工程研究所为依托,联合中科院新疆生态与地理研究所、中科院水利部成都山地灾害与环境研究所、中科院青海盐湖研究所等多个单位共同组建而成。平台数据资源涵盖野外观测、调查分析、汇交镜像、加工生产等多种来源,总量超450TB,聚jvzquC41yy}/ojniqq4dqv4vqr555==440nuou
15.四种获取全球道路矢量数据的方式不同数据源的全球道路数据都有差别。如国家地球系统科学数据中心和国家冰川冻土沙漠科学数据中心两个数据虽然来源相同,但是国家地球系统科学数据中心将其中中国部分的数据进行了重新矫正,使中国部分的数据在数据完整性和领土完整性上都有所优化;OpenStreetMap中的交通数据相较数据中心的数据量更大,但是细化到小区域互有不jvzquC41nkh/uqz0gf{/ew4kphu0397515:847mvo
16.国家冰川冻土沙漠科学数据中心开放基金2023年度申请指南国家冰川冻土沙漠科学数据中心(National Cryosphere Desert Data Center,NCDC)是由科技部和财政部于2019年6月首批认定的国家科学数据中心之一。NCDC作为国家科技创新基础平台,聚焦于高寒干旱特殊环境科学数据的资源建设与共享、技术研发与推广,通过整合各科研院所、高等院校、企事业单位等优势力量,构建引领国内外发展的冰川、jvzq<84yyy4oknjt0egt0ls1v|mh1;5452>0v;5452>35h;:87:797mvon
17.国家地球系统科学数据中心地球系统科学数据共享平台中国科技资源共享网| 国家高能物理科学数据中心| 国家基因组科学数据中心| 国家微生物科学数据中心| 国家空间科学数据中心| 国家天文科学数据中心| 国家对地观测科学数据中心| 国家极地科学数据中心| 国家青藏高原科学数据中心| 国家生态科学数据中心| 国家冰川冻土沙漠科学数据中心| 国家计量科学数据中心| 国家材料腐蚀与jvzq<84yyy4hgxicvc4dp8icvc5jpmjz0jznnHpg{yusfF7
18.南海及其邻近海区科学数据中心国家科技平台链接 中国科技资源共享网| 国家高能物理科学数据中心| 国家基因组科学数据中心| 国家微生物科学数据中心| 国家空间科学数据中心| 国家天文科学数据中心| 国家对地观测科学数据中心| 国家极地科学数据中心| 国家青藏高原科学数据中心| 国家生态科学数据中心| 国家冰川冻土沙漠科学数据中心| 国家计量科学数据jvzquC41qekbp7lgqfguc7hp1{jz0qyon
19.地球物理科学数据中心记者13日从中国科学院地质与地球物理研究所获悉,基于嫦娥六号月壤样品,该所李金华研究员领衔的研究团队,详细分析了月壤中各种磁性矿物,以及它们独特的磁性是怎样产生和保留下来的,揭开了月球背面月壳磁场弱与土壤磁性强之谜。相关研究成果在线发表于《自然·通讯》杂志。 月球上的磁性矿物,就像记录月球演化的“日记本”,保存了月球磁场演化jvzquC41igutrjhg0ikpfjyc0et0pn|u1pkxuMjvckrt0qyonAtfy|lwkfC27:7:84>:5@;:65
20.国家地球系统科学数据中心中国科学院东北地理与农业生态研究所特别研究助理李亮亮、山东师范大学杨贤鹏副教授为共同第一作者;东北地理所李伟强研究员、尹小建研究员及德克萨斯理工大学Lam-Son Phan Tran教授为共同通讯作者。本研究获国家重点研发计划(2022YFD1500505)、国家自然科学基金(32370321)及中国科学院战略性先导科技专项(XDA28110100)资助。jvzq<84pqtzigjxv0ikpfjyc0et0pn|u1pkxuMjvckrt0qyonAtfy|lwkfC7;B8244=39:985
21.专家热议Al4S数据库与知识库:构建创新基座促进建立开放共享数据  对于国家冰川冻土沙漠科学数据中心的建设和发展,国家冰川冻土沙漠科学数据中心主任、中国科学院西北生态环境资源研究院研究员张耀南谈到,冰冻圈科学数据包括野外观测、调查考察、数值模拟、测试分析、遥感反演、统计分析等类别的数据。为更有效支持AI应用,同时构建数据集存储环境,通过原始数据和AI样本数据、AI数据集管jvzq<84yyy4ykwmwcpku0lto1vkdj87245693;48cc<8g?8ge:j5h>7cg9l26n8378hd5o<1e0nuou
22.我院举办科学数据中心建设专题讲座暨第九期“能力建设”主题培训随后,张耀南主任对国家冰川冻土沙漠科学数据中心和甘肃省科学数据中心体系的发展历程、定位、实施方案和发展路线图等进行了介绍,重点对科学数据资源体系建设、平台建设、数据生产、数据汇交、挖掘和数据服务应用进行了讲解,分享了工作经验。张耀南主任从理论和实践层面对科学数据中心建设等内容进行了深入浅出的讲解,讲授既有jvzq<84yyy4tf|yk0pku0ls1ctz0497513804B4ctve22B:;3a714@56594ivvq
23.极地数据出版提升极地研究能力“数据出版能够将极地科学数据有效地转化为高质量的极地科技资源。”专家在近日上海召开的“《中国科学数据》出版联盟”科学数据出版与服务研讨会上表示。会议由《中国科学数据(中英文网络版)》期刊编辑部主办,国家极地科学数据中心承办,国家冰川冻土沙漠科学数据中心等4家国家级数据中心协办。 jvzquC41yy}/kƒntcp4og}4pgyy/j}rnAcoe?<9;7:>6
24.国家青藏高原科学数据中心4、 国家重点研发计划 :风电场、光伏电站生态气候效应和环境影响评价研究(2018YFB1502800) 数据使用声明 为尊重知识产权、保障数据作者的权益、扩展数据中心的服务、评估数据的应用潜力,请数据使用者在使用数据所产生的研究成果中(包括公开发表的论文、论著、数据产品和未公开发表的研究报告、数据产品等成果),明确注明数据jvzquC41fczb0}ufe0gd0ls1|j3icwx1fczb1Bf9:4>e86;3c;35dj6/:9l8/=::3f9c9@kcd1