滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系

1.山东黄金集团有限公司深井开采实验室,山东 莱州 261400

2.中南大学资源与安全工程学院,湖南 长沙 410083

作者简介 About authors

三山岛金矿西岭矿区是我国首个进行滨海开采的金属矿区,研究埋深对该区域地应力和岩石力学性质的影响,对于滨海岩石工程开挖设计及灾害防控具有重要意义。通过对该矿区3个地质钻孔ZK88-21、ZK88-14和ZK94-2的不同埋深岩芯进行取样,获取埋深300~1 900 m范围内的岩石标准试样。采用MTS815和声发射系统测试不同埋深岩石的力学参数与不同方向的声发射Kaiser效应点,进而获得不同埋深岩石的力学参数和地应力特征。以此为基础,分析滨海矿区不同埋深地应力、岩石力学参数及其之间的相互关系。结果表明:随着埋深的增加,滨海矿区岩石力学参数、自重应力、垂直应力、最大水平应力和最小水平应力均呈近似对数函数趋势增加,垂直应力的增幅逐渐小于自重应力。岩石力学参数与地应力大致呈对数关系,最大水平应力对岩石力学参数的影响大于最小主应力。埋深对岩石抗拉强度的影响大于其对抗压强度的影响。

关键词:滨海矿区;埋深;地质钻孔;地应力;岩石力学参数;西岭矿区

Keywords:coastal mining area;buried depth;geological drilling;in-situ stress;rock mechanical parameters;Xiling mining area

本文引用格式

为此,本文以三山岛金矿西岭矿区为背景,开展不同埋深下地应力与岩石力学参数的测试,分析地应力与岩石力学参数随埋深的变化规律及其相互关系,为滨海矿区竖井开挖、矿区后期的开采设计及滨海类似深部工程建设提供指导。

图1滨海开采的工程地质现象

Fig.1Engineering geological phenomenon of coastal mining

为测试埋深对该区域岩石力学性质和地应力的影响,本文在现有勘探钻孔的基础上,选择ZK88-14 (h=1 509 m)、ZK88-21(h=1 940 m)和ZK94-2(h=1 670 m)3个钻孔作为测试钻孔,所选岩芯的埋深范围为300~1 900 m,各钻孔测试点之间的埋深间隔为100~300 m,采集岩芯的岩性均为花岗岩。考虑到海水的腐蚀性特征与深部岩石力学的重要性,钻孔深部的测试点间隔根据岩性和埋深特点进行综合确定,具体取样深度:ZK88-14钻孔为300,600,900,1 200,1 500 m;ZK88-21钻孔为300,600,900,1 200,1 500,1 800,1 900 m;ZK94-2钻孔为300,600,900,1 200,1 500,1 600 m。

图2典型地质钻孔信息与岩石试样获取过程

Fig.2Typical geological drilling information and rock specimen acquisition process

在自然条件下,当岩石受到一定程度的初始应力时,会产生相应的细微裂隙,通常认为该过程是不可逆的。加工好的岩石试件在试验机加载作用下受力,若试件受力小于其在埋藏状态下所受的力,将不产生或产生极微弱的声发射活动,若试件受力达到或超过试件在埋藏状态下所受的力,产生大量声发射活动,该临界点称为Kaiser效应突变点,其所对应的应力被认为是岩石的历史最大应力。

图3声发射信号采集与试件加载

Fig.3Acoustic emission signal acquisition and specimen loading

图4不同钻孔岩芯试样的声发射Kaiser效应突变点判断方法

(a)岩芯裂隙发育时的Kaiser效应突变点判断方法;(b)受节理裂隙影响,2次加载难以判断Kaiser效应突变点时的Kaiser效应突变点判断方法;(c)岩石Kaiser效应突变点对应的应力会接近并超过岩石单轴抗压强度时的Kaiser效应突变点判断方法

Fig.4Judgement methods of acoustic emission Kaiser effect point for different drill core specimens

表1各钻孔不同埋深测试点地应力情况

Table 1  In-situ stress at different buried depth test points of each borehole

图5垂直应力与埋深的关系

Fig.5Relationship between vertical stress and buried depth

图6最大水平主应力与埋深的关系

Fig.6Relationship between maximum horizontal principal stress and buried depth

图7最小水平主应力与埋深的关系

Fig.7Relationship between minimum horizontal principal stress and buried depth

图8不同埋深岩芯的单轴压缩应力—应变曲线

Fig.8Uniaxial compression stress-strain curves of cores at different buried depths

图9岩石的弹性模量(a)与抗压强度(b)随埋深的变化规律

Fig.9Variation law of rock elastic modulus(a) and compressive strength(b) with buried depths

表2不同埋深岩芯的力学参数

Table 2  Mechanical parameters of cores at different buried depths

图10不同埋深岩芯的拉伸应力—应变曲线

注:图例“300-1”表示样品编号,其中“300”表示埋深为300 m,其他依此类推

Fig.10Tensile stress-strain curves of cores at different buried depths

图11不同埋深岩芯的抗拉强度曲线

Fig.11Tensile strength curve of cores at different buried depths

地应力是岩体能量积累与释放的结果,岩体应力的上限必然受到岩石力学性质的限制。因此,开展不同埋深下岩石力学参数与地应力关系的研究,对于深部岩石工程的开挖设计具有重要意义。

图12地应力与岩石力学参数的关系

Fig.12Relationship among in-situ stress and rock mechanics parameters

结合工程实践与实验室测试,对埋深范围为300~1 900 m的滨海岩芯进行地应力和岩石力学参数测试分析,得出如下结论:

(1)随着埋深的增加,滨海矿区岩石的自重应力、垂直应力、最大水平地应力和最小水平地应力均随着埋深的增加呈近似对数关系增加。当到达一定深度时,岩石的垂直应力小于自重应力。

(2)统计意义上,滨海岩石力学性质与埋深呈对数关系,同一埋深岩石力学参数的离散性显著,埋深对岩石抗拉强度的影响大于其对岩石抗压强度的影响。

(3)滨海矿区地应力与岩石力学参数呈近似对数关系,最大水平主应力对岩石力学参数的影响大于最小水平主应力。

Study of the fatigue behavior in welded joints of stainless steels treated by weld toe grinding and subjected to salt water corrosion

Large deformation mechanism and control countermeasure research of deep high stress roadway

Study on the relationship between granite rock mechanical parameters and rock depth

The change rule of the geostress and the elastic modulus of rock with depth and their mutual impact

In-situ study on stress in rock mass

Review and prospect of hard rock mine mining technology

Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance

Study on the variation law of deep rock mechanics parameters with the occurrence depth

Study of distributing characteristics of stress in surrounding rock masses and in-situ stress measurement for deeply buried tunnels

Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry

Influence of occurrence depth on dynamic fracture toughness of rock

Research on dynamic fracture toughness and tensile strength of rock at different depths

Hydrochemical characteristics of groundwater movement and evolution in the Xinli deposit of the Sanshandao gold mine using FCM and PCA methods

Static and dynamic mechanical properties of granite from various burial depths

Research on the law of rock porosity varying with formation depth

A review of dynamic mechanism and controlling of rockburst

Experimental research on the influence of occurrence depth on rock mechanical parameters

Study on the effect of buried depth on failure and energy characteristics of the basalt

THE END
0.S一文读懂应力集中与应力奇异理论应力集中系数表应力集中是在零件的截面几何形状突然变化处,局部应力远大于名义应力的现象,是引起结构失效的重要力学因素,构件的主要失效部位。“革命总是在最薄弱的环节爆发”,对于结构来讲,则是承受负载最大的局部区域容易失效。弹性力学研究了不同形状的开孔对应力集中的影响程度,其中,圆孔的应力集中程度最低。由于开孔,孔口附近jvzquC41dnuh0lxfp0tfv8x|jv}28A4ctvodnn4fgvgjn|4336634>6;
1.主题:摩尔应力圆的夹角为啥是2θ?如题,抗剪强度一章中,求一点的应力状态时,单元体的破裂面夹角是θ,为啥到了应力圆中变成2θ?从哪里开始转角的?顺逆时针?这个问题对学习高等土力学有很大的关系,希望得到业内资深人士的深度指导,谢绝泛泛背书的。真诚的感谢。浏览大图回帖(11): 11楼:看看材料力学 10楼:莫尔圆代表土中一点的应力状态而摩尔圆上的每个点都代表通过土中jvzquC41ddy/{jsvwenjpj3eqo5n1rsfgz4qjyDc?tkbf/ykf?8299>;
2.地铁施工实习总结(通用14篇)裂缝发展到一定程度,注浆压力又上升,由于裂缝的发展,压力的上升,地层中大小主应力方向开始转化,水平向主应力转化为被动土压力状态,这时需要有更大的注浆压力才能使土中裂缝加宽,出现第二个压力峰值(土体极为松软或注浆孔深很浅时,可能不出现)。由于此时水平向应力大于垂直向应力,地层开始出现水平向裂缝,当注浆液沿注jvzquC41yy}/qq6220ipo8f142842>4899=53?3jvor
3.材料力学笔记之——弯曲与梁结构基础建筑其他软件理论剪力流沿垂直于剪力Q方向的部分是线性变化的; 沿倾斜或平行于剪力Q方向的部分是按照抛物线变化的; 在横截面上,剪力沿壁“流动”以构成剪力Q,而且也满足水平和竖直方向力的平衡。 3.应力分布 四、应用 一般来说,梁的横截面上同时存在着正应力和切应力,但长梁的强度通常取决于弯曲正应力,按照弯曲正应力选择梁的jvzq<84yyy4gcwl|jgtyk~}kw0ipo8uquv528;945: