风载体型系数μsi与风压系数Cp有如下关系:
图1.21 某高层结构体型系数
1.3 结构风振系数 对于普通的建筑结构,风振系数可按《建筑结构荷载规范》(GB 50009-2012)式(8.4.3)计算; 对平面形状或立面形状复杂,立面开洞或连体建筑的风振系数可按风洞试验确定。时域法的步骤是: (1)通过风洞试验或模拟获得结构表面风压时程,利用有限元软件对结构进行建模,将风压荷载力时程Fi作用在表面节点上:
(1)基本周期 计算风荷载时输入的结构基本周期需根据结构特征值计算的实际周期取值,否则会影响风计算结果的准确性。 以14层框架结构为例,计算风荷载时软件默认的结构基本周期为0.2s,实际结构的基本周期为0.7s。基本周期按0.2s输入得到的X向剪力3524kN,基本周期按0.7s输入得到的X向剪力3689kN,剪力偏小4.5%,导致结构偏于不安全。
(2)地震组合 YJK软件缺省设置的参数是风荷载不参与地震组合,对于高度大于60m建筑,应勾选风荷载参与地震组合,否则会导致结构偏于不安全。
(4)山地建筑的风压高度变化系数取值 根据《建筑结构荷载规范》(GB 50009-2012)第8.2.2条,山地建筑应考虑地形条件的修正,对于山峰和山坡,修正系数应按式8.2.2计算;对于山间盆地,谷地等闭塞地形,修正系数可在0.75~0.85选取;对于与风向一致的谷口,山口,修正系数可在1.20~1.50选取。
(6)规范风荷载与风洞试验风荷载对比分析(略) 可参考《高层建筑结构计算分析实用指南》。
(7)结构阻尼比 风振舒适度评价中的阻尼比取值是风振下结构舒适度评价的关键问题之一。结构阻尼比的一般变化规律有: 1)结构基本周期长时,阻尼比较小; 2)随着建筑高度的增加,结构阻尼比减小; 3)填充墙少的结构的阻尼比小于填充墙多的结构的阻尼比; 4)建筑结构短方向阻尼比小于长方向的阻尼比; 5)小振幅时的阻尼比小于大振幅时的阻尼比; 6)小应力水平下的阻尼比小于大应力水平下的阻尼比。 风振舒适度问题涉及的结构一般是高度高,基本周期长,而且风作用下振幅小、应力水平也比较低,因此风振舒适度评价时所采用的阻尼比远小于常规结构强度计算时采用的阻尼比。图21为某高层结构采用不同阻尼比计算的楼层剪力,由图可知,阻尼比越大,楼层剪力越小,当阻尼比增大一倍时,楼层剪力减小约6%。
(9)连梁刚度折减问题 根据《高层建筑混凝土结构技术规程》(JGJ3-2010)第5.2.1条文说明,“仅在计算地震作用效应时可以对连梁刚度进行折减,对如重力荷载、风荷载作用效应计算不宜考虑连梁刚度折减。有地震作用效应组合工况,均可按考虑连梁刚度折减后计算的地震作用效应参与组合”。 相对于地震作用来说,风力作用持续时间较长,往往达几十分钟,甚至几个小时,因此不能要求连梁通过塑性变形将内力转移到其他尚未屈服的构件上。结构计算时刚度折减愈多,就意味着风荷载作用下裂缝可开展得愈大,如发生强大阵风时,连梁塑性铰会过早出现,原结构的联肢墙刚度出现较大削弱,甚至成为各个独立的单肢墙受力。在长时间的风荷作用下,这无疑对建筑结构安全是很不利的。故而为了避免连梁在风荷载作用下裂缝开展过早过大,刚度折减系数应取较大值。 根据各种不同荷载作用下取不同刚度折减系数的方法,在地震荷载作用下,连梁刚度折减系数可取0.5~0.8;在风荷载作用下,折减系数可取0.80~1.0;在竖向荷载作用下,折减系数取1.0(即不折减)。
广州良业大厦地上塔楼2建筑面积4.7万㎡,塔楼3建筑面积6.4万㎡。塔楼建筑高度152.7m,地上35层,如图31所示。 本工程抗震设防烈度为7度,设计地震分组为第一组,场地类别为II类,基本风压为0.5kN/㎡,地面粗糙度为C类,体型系数根据风洞试验确定。
图31建筑效果图
(1)风洞模型简介 风洞模型比例为1:300,50年一遇基本风压为0.5kPa,10年一遇风压为0.3kPa,承载力计算时,阻尼比取为5%,加速度计算时,阻尼比取为2%,风场类别采用《建筑结构荷载规范》GB50009中规定的B类地貌风剖面。风洞试验照片和风向角示意图分别见图32和图33。
因风洞试验数据是按B类地面粗糙度为依据确定的,C类的数据根据规范B类与C类风压高度系数的比例关系确定。
(2)楼层等效静风荷载对比 风致动力响应分析采用了风洞试验时程数据得到的结构荷载谱密度来计算结构风振响应的非拟定常方法,风洞的等效静力剪力与按规范计算的剪力在塔楼底部处的对比如表3-1,两向按风洞数据计算的基底剪力均比规范计算的要小。
(3)风荷载下的层间位移角 特定的风向角下,结构楼层的等效荷载包括Fx,Fy两个平动分量和Mz一个扭转分量,考虑到各荷载分量的非同时性,风洞试验给出的组合系数如表3-2。
根据单塔计算结果,各工况下层间位移角的计算结果如下表3-3及图34~图37,塔楼2计算的Y向层间位移角在每一层基本上比风洞计算的大,塔楼2的X向和塔楼3的计算结果基本上都比风洞计算的小,风洞试验和规范计算的最大层间位移角均满足规范要求。
从图34可知,塔楼2X向规范的层间位移角比风洞试验的大,层间位移角最大值按规范取。从图35可知,塔楼2Y向规范的层间位移角比风洞试验的大,层间位移角最大值按规范取。
从图36可知,塔楼3X向15层以上规范的层间位移角比风洞试验的大,15层以下规范的层间位移角比风洞的小,层间位移角最大值取规范和风洞试验的包络值。从图37可知,塔楼3Y向规范的层间位移角比风洞试验的大,层间位移角最大值按规范取。
图41建筑剖面图 由于本工程风荷载较大,且特征周期较长,地震内力也较大,为了提高竖向抗侧力构件的侧向刚度,结构核心筒剪力墙及框架柱布置如图42所示。
图42结构平面布置 按10年一遇的风荷载取值计算结构顶点最大加速度,根据风洞试验和规范计算得到楼层顶点最大加速度,分别见表4-1和表4-2所示。风洞试验和规范计算的结果都表明,满足《高规》3.7.6结构顶点最大加速度限值0.25m/s2,结构在风荷载作用下舒适度满足要求。