建筑结构抗震第章地震作用计算一

认证主体:吴**(实名认证)

IP属地:湖北

下载本文档

1、第3章 地震作用计算(一) 地震反应分析 结构的地震反应: 在地运动的干扰下,结构运动状态(位移、速 度、加速度)的变化及由此产生的内力及变形的 变化。 结构的地震反应分析: 用计算的方法来确定结构的地震反应,也就是 考虑地震作用的结构计算方法。(地震力理论) 3.0 概述 抗震计算设计的过程抗震计算设计的过程:计算地震作用计算地震作用 (荷载)(荷载) 计算结构的地震作用效应计算结构的地震作用效应 (内力、变形)(内力、变形) 承载力计算承载力计算 变变 形验算形验算 地震作用效应的计算是一个复杂的动力学问题, 涉及到地震的影响、结构本身的动力特性(自 振周期、阻尼)、场地的特性等。 等等

2、效效 静静 力力 法法 简简 化化 的的 底底 部部 剪剪 力力 法法振振 型型 分分 解解 反反 应应 谱谱 法法 反反 应应 谱谱 理理 论论 静静 态态 分分 析析 ( 最最 不不 利利 状状 态态 分分 析析 ) 弹弹 性性 全全 过过 程程 分分 析析弹弹 塑塑 性性 全全 过过 程程 分分 析析 动动 态态 分分 析析 ( 全全 过过 程程 时时 程程 分分 析析 ) 确确 定定 性性 方方 法法非非 确确 定定 性性 方方 法法 随随 机机 振振 动动 分分 析析 地地 震震 作作 用用 下下 结结 构构 的的 计计 算算 方方 法法 对结构地震反应分析的基本认识 难以准确计算。

3、 算不准的原因: 1 需准确知道地面运动,而这是不确定的。 2 结构材料的力学性能的不确定性。 3 结构和地基的相互影响、协同工作的不确 定性。 基本问题: 用什么物理量描述地震作用? 地震作用大小与哪些因素有关? 等效静力法只考虑了结构的质量和烈度(地 运动加速度) 取K=0.2 特点: 1)将建筑物看作一个刚体与地面一起运动。 2)将地震对建筑的影响等效为静荷载“静力”。 3)没有考虑结构和场地的动力特性。 4)偏于保守 i g igii KG g x gmxmF max max 3.1 早期的等效静力法 后来引入了“区域差异系数”、“结构类型 系数”、“高度变化系数”,一定程度考虑了 场

4、地因素、结构种类和变形的影响。但是仍无 法考虑结构刚度、震动持续时间的影响,也未 反映远震近震的影响。 由此提出新的问题: 为什么烈度相同的不同场地上结构的地震反应为什么烈度相同的不同场地上结构的地震反应 存在差别?存在差别? 为什么烈度相同震中距不同也会造成地震反应为什么烈度相同震中距不同也会造成地震反应 的差异?的差异? 在相同的干扰作用下,结构所受惯性力仅仅与在相同的干扰作用下,结构所受惯性力仅仅与 质量相关么?质量相关么? 3.2 结构动力学方法时程分析 理论和概念早已形成,随着电子计算机理论和概念早已形成,随着电子计算机 的出现得以实现。的出现得以实现。 对于特殊的建筑,按地震动的时

5、间历程对于特殊的建筑,按地震动的时间历程 解结构体系振动的微分方程,计算结构的解结构体系振动的微分方程,计算结构的 地震反应。我国规范规定对特别不规则建地震反应。我国规范规定对特别不规则建 筑及甲类建筑用时程分析法进行补充计算筑及甲类建筑用时程分析法进行补充计算。 一、结构体系的振动模型及通常的简化假定 体系的自由度问题体系的自由度问题 一个自由质点,若不考虑其转动,则相对于 空间坐标系有3个独立的唯一分量,因而有三个 自由度,而在平面内只有两个自由度. 如果忽略直杆的轴向变形,则 在平面内与直杆相连的质点 只有一个位移分量,即只有一 个自由度 x1 x2 单质点及多质点水平地震作用下 的自由

6、度简化示例: 地震作用有三个方向:两个水平方向,两个水平方向, 一个竖向一个竖向. 一般情况下,应允许在建筑结构的两个主轴一般情况下,应允许在建筑结构的两个主轴 方向分别计算水平地震作用并进行抗震验算方向分别计算水平地震作用并进行抗震验算 ,各方向的水平地震作用应由该方向抗侧力,各方向的水平地震作用应由该方向抗侧力 构件承担。构件承担。 有斜交抗侧力构件的结构,当相交角度大于有斜交抗侧力构件的结构,当相交角度大于 1515 时,应分别计算各抗侧力构件方向的水时,应分别计算各抗侧力构件方向的水 平地震作用。平地震作用。 关于上次课的问题 什么是地震反应?影响结构地震反应的主要因 素有哪些? 为什

7、么地震反应难以准确计算? 结构的振动分析模型通常怎样简化? (一)单自由度弹性体系 1、运动方程、运动方程 作用于质量m上的力 弹性恢复力 阻尼力 “-”表示与位移 x方向相反 ( ). ( ) xcR KxS 二、振动微分方程及其解答 质量m的绝对加速度 由牛顿第二定律 整理后 相当于由地震产生的作用于结构上的相当于由地震产生的作用于结构上的 强迫力。强迫力。 x xa g )( x xmxckxmaF g )()()()(t x mtkxtxctxm g x m g )()()( 2 2)( )()()()( 2 txtx m k tx m k km c tx txtx m k tx m

8、c tx g g 2、单自由度自由振动单自由度自由振动 圆频率 周期 频率 阻尼比 一般结构的阻尼比0.010.1之间,一般取0.05。 m c km c T f T m k 22 1 2 0)()(2)( 2 txtxtx 几个基本物理量:振动频率、自振周期、阻尼比 齐次方程的通解齐次方程的通解 解 为有阻尼的圆频率 当 很小时 注意其解与结构的初位移和初速度有关。 0)()(2)( 2 txtxtx 2 1 sin )0()0( cos)0()( t xx txetx t 3、强迫振动、强迫振动 g xxxx 2 2 7、*地震波地震波 面波面波:有瑞雷波(R波)和洛夫波(L 波),vR=

10、远,发 生在厚的、软弱的冲积土层上。(1967墨西哥 城记录) 4 产生很激烈的沉陷、位移(几乎不晃)。发生 在厚冲积土层或液化土层。(1964日本新泻) 非齐次方程的特解非齐次方程的特解杜哈米积分:杜哈米积分: 思路: 1、利用齐次方程的通解 2、将地震的地面加速度分成有限个脉冲 3、讨论在单一脉冲作用后结构的响应 4、单一脉冲作用后结构的响应为自由振动,解的形 式已知(只是初速度不同)。 5、在所有脉冲作用下结构的响应为每一自由振动的 叠加(积分) 在脉冲下结构的响应 地面运动的加速度 曲线是一个不 能用数学表达式表示的曲线。我们可以将 其分为无限个微分脉冲。每一个微分脉冲 将产生一个自由

11、振动(一个位移dx ),无 限个微分脉冲产生的位移积分即是方程的 特解。 由dt时间的脉冲 产生的自由 振动在t时刻的位移为: g x dxg)( )( sin )()( )( cos)()( )( t xx txetdx t 初位移 初速度 将所有脉冲积分 非齐次方程的特解也称为杜哈米积分 0)(x dxx g )()( dt x edx gt )( sin )( )( )( tdx tx 0 )()( t t g dtextx 0 )( )( sin)( 1 )( 与齐次方程的通解相加构成非 齐次方程的通解,一般情况下, 初位移和初速度均为零,故其解 为杜哈米积分。 (二)多自由度弹性体系

12、(二)多自由度弹性体系 1、多质点体系的计算模型、多质点体系的计算模型 一般n层由n个质点,n个自由度,两个方向 多自由度结构变形示意图 2、作用于、作用于i质点质点mi上的力上的力 A)、弹性恢复力、弹性恢复力 与单质点的区别是:不仅要考虑xi 位移产生的恢复力, 还要考虑其它质点位移对mi的恢复力。 B)、阻尼力、阻尼力 gi xx )( 11niniiiii xkxkxktS )( 2211niniiiiii xcxcxcxctR C)、 惯性力惯性力: mi的绝对加速度为的绝对加速度为 amF n个质点可写出n个方程组成的方程组 ; , 0 0 1 11211 2 1 nnn n n

13、kk kkk k m m m M )()()()(txIMtxktxctxM g 1 1 2 2 1122 2 1 2 2 122121 )(2 , )(2 kMc 方程的求解较困难。利用振型分解法时,亦需先求出结构 的自振周期和振型。利用无阻尼自由振动方程求周期和振型。 系数行列式 由此可求出由此可求出n个个 圆频率圆频率, 其中最小的叫第其中最小的叫第 一圆频率。一圆频率。 3、多自由度无阻尼自由振动、多自由度无阻尼自由振动 令其解 则 代回方程: 0)()(txktxM )()sin()( )sin()( 22 txtXtx tXtx 0)( 0)()( 2 2 xMk txktxM 0

14、 2 Mk 将i依次回代方程可得到相对的振幅 Xi,即为振型即为振型。 例3-3:若为两个自由度,令n=2,则有 0 0 0 0 2 2 2221 121 2 11 2 12 2221 1211 Mkk kMk M M kk kk 解出 将求出的1、2分别代回方程,可求出 X1 、X2的相对值。 对应于1为第一振型 对应于2为第二振型 21 21122211 2 2 22 1 11 2 22 1 11 2 2 1 2 1 mm kkkk m k m k m k m k 2 2 111 12 12 11 mk k X X 1 2 211 12 22 21 mk k X X 可见对应于结构的某一自

15、振频率,结构各可见对应于结构的某一自振频率,结构各 质点振动的位移比是一个定值,这就是振型。质点振动的位移比是一个定值,这就是振型。 结构的振型数与自振频率数相同。结构的振型数与自振频率数相同。 例题 两质点体系,m1=m2=m,k1=k2=k 求该体系的自振周期和振型 k11=k1+k2=2k,k22=k,k12=k21=-k 10.618k/m, m 2 21.618k/m m1 21 21122211 2 2 22 1 11 2 22 1 11 2 2 1 2 1 mm kkkk m k m k m k m k k k =0.618/1 1 2 2 111 12 2 2 111 12 1

16、2 11 mk k mk k X X 1 618.1 1 2 211 12 22 21 mk k X X 3质点体系弯曲型振动的3个振型 3质点体系剪切型振动的3个振型 三、扭转效应的影响 从抗震要求来讲,要求建筑的平面简单,规 则和对称,竖向体型力求规则、均匀,避免有过 大的外挑和内收。当体型不规则时,需进行结构 的扭转地震效应计算。 抗震规范规定: 质量和刚度分布明显不对称的结构,质量和刚度分布明显不对称的结构, 应计入双向水平地震作用下的扭转影响;应计入双向水平地震作用下的扭转影响; 其他情况,应允许采用调整地震作用效应其他情况,应允许采用调整地震作用效应 的方法计入扭转影响。的方法计入

17、扭转影响。 1、房屋的质心、刚心、房屋的质心、刚心 k kk m w xw x 重合房屋的质量中心与重心 k kk m w yw y yj jyj c k xk x 构件刚度的中心 向抗侧力房屋的刚度中心,同方 xj jxj c k yk y 刚心为反作用力点 重心为作用力点 当房屋的质心、刚心不重合时,即有偏心距,在 水平力作用下,结构产生扭转。 结构的振动为平移扭转耦联振动, x方向,y方向和转动,角部的线位移最大, 破坏严重。 对于n层房屋,有3n个自由度。 2、结构的振动形式、结构的振动形式 3、地震效应的求解、地震效应的求解 运动方程振型分解反应谱求反应 组合 四、非线性时程分析简介

18、 略 3.3 反应谱方法 反应谱理论是我国及世界上许多其它国家抗 震规范中地震作用计算的理论基础。 一、什么是反应谱 反应谱的概念反应谱的概念:在特定的干扰作用下,单自由度 弹性体系的最大反应与自振周期T的变化关系曲 线即反应谱。 有最大位移反应谱、最大速度反应谱、最大 加速度反应谱。 与等效静力法的最主要的区别在于:考虑了与等效静力法的最主要的区别在于:考虑了 地震反应的大小随结构自身的动力特性(自振地震反应的大小随结构自身的动力特性(自振 周期)而变化。周期)而变化。 加速度反应谱示意 周期T 加 速 度 反 应 加速度反应谱 以给定的地震加速度时程曲线作为干 扰作用,运用结构动力学原理得

19、到单自 由度体系的弹性最大反应。该最大反应 随体系自身的动力学特性(自振周期T) 的变化而变化,取不同的T值分别计算最 大响应,得到最大响应与T的变化关系曲 线,即反应谱。 二、反应谱是如何得到的 微分后还可求出速度反应: dtex dt tdx tx t t g )( cos)( )( )( 0 )( 同理可写出加速度反应: dtex dt txd tx t t g )( sin)( )( )( 0 )( t t g dtextx 0 )( )( sin)( 1 )( 具体过程为,利用杜哈米积分,得出单自 由度弹性体系的位移解答: 由于地震的运动是一个复杂的问题,为了使计 算简化,主要关注地

20、震反应的最大值。 可写出最大反应: (简化时取 ) max )( 0 max )( 0 max )( 0 )(sin)( 1 )(cos)( )()(sin)( dtexS dtexS txdtexS t t gd t t gv g t t ga 当地面运动 及结构的阻尼 确定后, 可以看出结构的反应仅与结构的自振周期 有关。绘出的曲线称为反应谱。绘出的曲线称为反应谱。 加速度反应谱,速度反应谱,位移反应谱。加速度反应谱,速度反应谱,位移反应谱。 )(tx g )(T 用Elcentro波做为干扰作用计算的反应谱 周 期 () 速 度 ( ) 位 移 () 周 期 () 周 期 () 加 速

21、度 () 岩 石 坚 硬 场 地 厚 无 粘 性 土 层 软 土 层 给出的Elcentro的地震反应谱 可以看出: 加速度反应随结构自振周期增大而减小。 位移随周期增大而增大。 阻尼比的增大使地震反应减小。 场地的影响,软弱的场地使地震反应的峰值 范围加大。 3.4 设计用反应谱 反应谱计算时所采用的地运动加速度时程曲 线来自以往的强震记录。地震是随机的,每一 次地震的加速度时程曲线都不相同,则加速度 反应谱也不相同。抗震设计时,我们无法预计 将发生地震的时程曲线。用于设计的反应谱应 该是一个典型的具有共性的可以表达的一个谱 线。 设计反应谱考虑了烈度、场地及震中距因素 以及结构自身的动力特

22、性(自振周期、阻尼) 的影响。 一、场地类别及设计地震分组 (一)场地类别 场地:工程群体所在地,其范围相当于 一个厂区、住宅小区、一个自然村落或 不小于1km2的范围。 A.不同场地上的建筑的震害不同。因地 震的大小和工程地质条件不同而不同。 在软弱的地基上,柔性结构(长周期) 破坏较重,刚性结构表现较好; 在坚硬的地基上,柔性结构表现较好, 而刚性结构表现不一。在坚硬的地基上, 一般是结构破坏,在软弱的地基上有结构 破坏,也有地基破坏。 B.原因分析:这与地基的动力特性有关。 地震波在地壳内部传播,地震波传至 地表时的振动强烈程度,与地震的震级、 震中距、振动的频率组成、场地土层的组 成(

23、动力参数自振周期)有关。 震害表明, 。这就有必要研 究建筑的场地对建筑物的地震作用的影响 ,以便 。 场地的固有周期模型 i层土的剪切刚度 当为单一土质时,固有周期 H土层厚度 vs剪切波速 vs H T 4 解多质点体系振动方程。 0 xKxM h G K i i i 土层的剪切摸量 多层土的固有周期 当 大时(坚硬土) T小,当h大时, T大,场地土的固有周期与土层的坚硬程度 和土层覆盖厚度有关。 C.场地的地震效应 场地的土层相当于一个放大器和滤波 器。地震波由各种周期的谐波分量组成。 地震波经过土层时,将放大那些与场地固 有周期相近的谐波分量,而使其它谐波分量 衰减减小。 v h s

24、i i T 4 vs 地震波 软弱地基 以长周期为主,放大。 坚硬地基 以短周期为主,放大。 当建筑的自振周期与场地的周期相近 时,振动会放大,使破坏更大,相反则小。 场地 (放大器,滤波器) 软弱地基上建筑震害较重的原因 1)建筑的破坏有一个过程,当建筑开裂后 结构的自振周期将加大,对于坚硬场地上 的建筑来说,由于结构的周期将远离场地 的周期,故结构的地震作用将减小。 2)而软弱场地上的建筑开裂后,自振周期 将靠近场地的周期,使结构的地震作用进 一步加大,故破坏严重。 D.*场地的类别划分:场地的类别划分: 建筑场地的类别与场地土的类型场地土的类型和场 地土的覆盖层厚度覆盖层厚度有关 *场地

25、土的类型场地土的类型:场地土的类型根据场地 土的坚硬程度划分为四类。 a、实测剪切波速法:实测地面下20m(但 不深于覆盖层厚度)土层的等效剪切波等效剪切波 速。速。 n i sii o se vdt td v 1 )/( ;/ Vs800 岩石 800Vs500 m/s 坚硬土或软质岩石 500Vs250 中硬土 250Vs150 中软土 Vs150 软弱土 b、近似划分法:根据土层的性状近似划分, 见规范表4.1.3。 *场地覆盖层厚度场地覆盖层厚度: 当剪切波Vs 500时,且其下卧各层的剪切 波速均不小于500 ,其上部到地表的厚度 为场地覆盖层厚度。 *建筑场地的类别建筑场地的类别:

26、 根据场地土的类型和场地覆盖层厚度, 分为I、类。 Vse见P15式(2-1)。 等效剪切波 速(m/s) 场 地 类 别 0I1 Vse8000 800Vse5000- 500Vse25055- 250Vse15050- Vse150158080 例: 已知某建筑场地的钻孔土层资料如下表所示,试确定该建筑场地 的类别。 层底深度(m)土层厚度(m)土的名称 土层剪切波速vsi(m/s) 9.50 9.50 砂 170 37.80 28.30 淤泥质粘土 130 43.60 5.80 砂 240 60.10 16.50 淤泥质粘土 200 63.00 2.90 细 砂 310 69.50 6.

27、50 砾混粗砂 520 解: (1)确定地面下20m表层土的场地土类型 vse值位于250 vse 150m/s之间,故表层土属于中软土。 (2)确定覆盖层厚度dov 由表中数据知,63m以下的vsi=520m/s500m/s,故 dov=63m。 (3)确定建筑场地的类别 由于表层土为中软场地土,以及dov50m,查规范 表4.1.6知,该建筑场地类别为III类。 smv se /36.146 )130/5.10170/5.9( 20 (二)设计地震分组 反映的是同烈度,不同震中距对不同建筑的震害影响。 近震远震的引出:同一地震烈度造成不同地区的震害 的差异。 a、 震动频率的衰减快慢差异造

28、成地面震动卓越周期变化 高频衰减快,低频衰减慢,所以离震中近高频分量多, 离震中远低频分量多。 b、 不同建筑的自振周期存在差异:刚度小的柔性结构自 振周期长(频率低);刚度大的刚性结构自振周期短 (频率高)。 c、 共振问题:当强迫振动的频率与结构频率相近时,则 产生共振放大作用。 d、 所以近震时刚度大的建筑破坏较严重,远震时刚度小 的建筑破坏较严重。 原规范关于近震、远震的判定:比震中小 一度为近震,比震中小两度为远震。 6度 7度 震中8度 现行规范在综合考虑了其他影响因素之后, 改为“设计地震分组” 二、设计反应谱 由牛顿第二定律和质点的平衡条件,质点 上的惯性力: ktFtx tk

29、x txctkx x xmmatF g /)()( )( )()( )()( 相对位移x(t) 近似与惯性力对应,惯性力 看作是反映地震影响的等效力。利用它的最大值 来对结构进行抗震计算,把动力问题转化为静力 问题计算。在这一点上,反应谱法与等效静力法 是相似的。 G 重力,质点的重量,单位KN(力) GKG g g x x S mSmxxmtFF g g a ag max max max max )()( 将惯性力看做反映地震对结构影响的等 效力,取最大值做为“最不利状态”。 是一个无量纲的系数,称为水平地震影响系数水平地震影响系数 为一放大系数,称为动力系数 结构相当于一个放大器,地震输入一个振动, 结构的反应为Sa,放大了 倍。 的大小与结构的自振周期T和阻尼比有关, -T曲线称为 反应谱。另外 还与场地类别、 设计地震分组等有

0/150

联系客服

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!

THE END
0.企业危机管理中国传统文化有哪三大主流文化? 儒家文化的核心是什么? 为什么违背传统文化的道德底线会引发危机? 案例:1、哈尔滨警察打死人事件是怎么酿成的? 2、林嘉祥猥亵小女孩事件的危机分析 3、女服务员刺死官员案的原因分析 4、宝马车主一家为什么被害? 5、中国最好的证券公司为什么会被合并? 6、浙江省政府原秘书长为什么会jvzq<84yyy4i|}ge0eun1ujuuqt0kwkqa39367mvon
1.2017二级注册建筑师《建筑结构》习题及答案B.结构类型C.地基土的压缩性D.基础形式答案:A3.刚性矩形基础如图示,经计算发现基底右侧出现拉力,为使基底不出现拉力,下列哪种措施是有效的( )?A.缩小基础宽度bB.增加基础宽度bC.增加基础厚度hD.调整两级厚度hl和h2的比值提示:可知应加大基拙宽度,减少偏心距。则可使塞底不出现拉力。答案:B4.下列关于桩的jvzquC41yy}/qq6220ipo8pcqunj1ƒmwegpjcwjwunj1=74289/j}rn