有限元分析复习内容汇总

材料力学有限元分析知识点总结材料力学是研究物质力学性质和行为的学科,而有限元分析是一种利用计算机数值模拟方法对工程问题进行分析和计算的技术。

本文将从理论基础、有限元建模、求解方法和误差分析等方面总结材料力学有限元分析的关键知识点。

一、理论基础1. 材料力学基本原理:包括应力、应变、变形和弹性模量等基本概念,以及胡克定律和应力应变关系等基本理论。

2. 有限元法基本原理:包括将实际结构离散为有限个单元,建立节点和单元之间的关系,以及应用物理原理和数值方法求解得到数值解的基本思想。

3. 有限元离散方法:包括将连续问题离散化为有限个子问题,建立单元刚度矩阵和全局刚度矩阵,以及应用有限元法进行力学问题分析的基本步骤。

二、有限元建模1. 几何建模:将实际工程结构进行几何建模,通常使用CAD软件进行建模,包括建立节点和单元等。

2. 材料建模:根据实际材料的物理性质和力学行为,选择适当的材料模型,如线性弹性模型或非线性材料模型。

3. 网格划分:将结构离散为有限个单元,通常使用三角形单元或四边形单元进行网格划分,确保离散后的单元足够小且保证几何形状的准确性。

三、求解方法1. 单元应力应变计算:通过数值方法计算每个单元的应力和应变,可采用解析解、数值积分或有限元法求解。

2. 节点位移计算:根据应力应变关系和单元的几何形状,计算每个节点的位移,从而得到结构的变形情况。

3. 刚度矩阵的建立:根据单元的几何形状、材料性质和节点位移等信息,建立单元刚度矩阵和全局刚度矩阵,用于力学方程的求解。

4. 边界条件的施加:根据实际工程问题,施加适当的边界条件,如固支约束和荷载条件等,从而得到合理的求解结果。

四、误差分析1. 收敛性分析:通过逐步增加单元数目或减小网格大小,观察求解结果是否趋近于稳定值,从而判断数值解的收敛性。

2. 精度分析:通过与解析解或实验结果进行比较,评估数值解的精度,包括位移误差、应力误差和能量误差等指标。

3. 稳定性分析:判断数值解的稳定性和可靠性,防止数值发散或出现明显的计算错误。

有限元期末复习提纲1.弹性矩阵,应变矩阵,应力矩阵的定义微分体表面上的应力可分解为一个正应力和两个切应力。

垂直于表面的应力称为正应力;平行于表面的应力称为切应力。

应力矩阵弹性矩阵应变矩阵2.节点自由度定义,写出平面应力三角形单元,刚架单元与桁架单元(平面与空间),薄板弯曲单元,实体元的节点自由度节点自由度:节点所具有的位移分量的数量平面应力三角形单元:节点自由度2,单元自由度数=2*3=6平面刚架单元:节点自由度3(2个移动自由度,1个旋转自由度),单元自由度数=3*2=6空间刚架单元:节点自由度6,单元自由度数=6*2=12平面桁架单元:节点自由度2,单元自由度数=2*2=4空间桁架单元:节点自由度3,单元自由度数=3*2=6薄板弯曲单元:实体元:4节点四面体单元:节点自由度3,单元自由度数=3*4=123.平面应力问题的定义和特点1. 平面应力问题如果空间物体满足以下两个条件,则该问题可以按平面应力问题考虑。

(1)某方向尺寸较另外两方向的尺寸小得多,即近似为一等厚的薄板;(2)受到平行于板面的沿厚度方向均匀分布的面力;根据上述条件,在上图中,图(a)所示的结构属于平面应力问题。

而图(b)中结构的载荷与板平面不平行,图(c)中结构的厚度t与截面尺寸差不多,因此不是平面应力问题。

一般地,当结构厚度t≤L/15(L为截面特征尺寸)时,结构可作为平面应力问题。

如车辆的墙板顶板等受拉压的平板,内燃机的飞轮,链传动的链片以及宽度较小的直齿圆柱齿轮等。

4.杆件结构的分类及其特点杆件结构定义:当结构长度尺寸比两个截面方向的尺寸大得多时,这类结构称为杆件曲杆直杆等截面杆(1)桁杆,和其他结构采用铰相连接,如图(a)所示,其连接处可以自由转动,因此这类结构只承受拉压作用,内部应力为拉压应力。

影响应力的几何因素主要是截面面积。

由桁杆组成的杆系称为桁架,若杆系和作用力均位于同一平面内,则称为平面桁架,否则称为空间桁架。

复习要点复习要点1.弹性力学解的形式以及有限元解的性质。

2.历史上首次使用的单元形状。

3.有限元方法的应用场合及其发展。

4.有限元方法的研究人员有几类?5.有限元软件的架构。

6.等参元的构造方法和性质。

7.计算模态分析的数学本质。

8.梁理论的种类及特点?9.有限元解与网格密度的关系,与理论解的关系。

10.等参元的局部坐标系特点。

11.不同的梁理论适用范围。

11.剪切锁死,沙漏,减缩积分,零能模式的概念。

12.显示算法和隐式算法。

13.有限元软件的发展趋势。

14.板、壳、膜单元的定义。

15.接触算法的基本算法及其特点。

16.两种模态分析方法的特点。

17.圣维南原理。

18.常用的强度理论。

19.有限元刚度矩阵的特点。

20.应变矩阵的特点。

21.有限元对网格的要求。

22.压力容器的建模方法?油罐,储气罐,槽车,对称或不对称的建模方法23.机械联接面上接触网格的划分。

24.模态计算结果对机床结构优化的意义。

25.已知单元插值函数和结点位移,求给定点的位移。

26.已知单元插值函数和结点温度,求给定点的温度。

27.传热学的三个基本定律。

课后练习汇总(一)用软件进行有限元分析的几个步骤是什么?(二)基于位移的有限元法求出的是结点位移还是单元的位移?(三)机械工程中,有限元法有什么用处?(四)列举几个有限元法可以应用的工程学科。

(五)什么是插值函数?(六)什么是广义胡克定律?(七)有限元软件中常见的单元类型有几种?分别说明这几种单元的应用场合(八)传统的机械设计中,零件强度的校核方法与现代的机械设计有和不同?(九)有限元方法的实施主要是依靠手工计算还是商业软件?(十)有限元法能够用于固体结构的分析,是否可以用于流体、热、电磁场、声场的分析?(十一)传统的机械零件强度校核中,一般要求零件形状简单,可以简化成杆或者梁,有限元方法有这方面的要求么?(十二)CAD建模得到的模型与有限元的模型之间有什么联系?(十三)列举常用的5个常用有限元软件?(十四)工程中常用的模拟、仿真技术除了有限元方法以外,还有哪几种?(十五)主流的有限元软件架构一般是怎样的?(十六)CAD软件经常在有限元软件中经常扮演什么角色?(十七)有限元分析在机械设计中能起到什么作用?(十八)有限元方法与弹性力学的关系是什么?(十九)什么是材料的真应力-应变曲线,跟有限元分析有什么关系?(二十)什么是Tresca应力和Mises应力?分别说明其应用场合。

复习提纲1.弹性力学问题的基本假设;a.连续性假设根据这一假设,物体的所有物理量,例如位移、应变和应力等均成为物体所占空间的连续函数。

b.均匀性假设假设弹性物体是由同一类型的均匀材料组成的,物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。

在处理问题时,可以取出物体的任意一个小部分讨论。

c.各向同性假设假定物体在各个不同的方向上具有相同的物理性质,物体的弹性常数不随坐标方向变化。

像木材、竹子以及纤维增强材料等,属于各向异性材料,它们是复合材料力学研究的对象。

满足胡克定理。

e.小变形假设在弹性体的平衡等问题讨论时,不考虑因变形所引起的几何尺寸变化,使用物体变形前的几何尺寸来替代变形后的尺寸。

采用这一假设,在基本方程中,略去位移、应变和应力分量的高阶小量,使基本方程成为线性的偏微分方程组。

2.有限元法的基本思想;有限元法的基本思想是:把连续的几何结构离散成有限个单元,并在每一个单元中设定有限个节点,从而将连续体看作仅在节点处相连接的一组单元的集合体,同时选定场函数的节点值作为基本未知量,并在每一单元中假设一个近似插值函数以表示单元中场函数的分布规律,再建立用于求解节点未知量的有限元方程组,从而将一个连续域中的无限自由度问题转化为离散域中的有限自由度问题,求解得到节点值后就可以通过设定的插值函数确定单元上以至整个集合体上的场函数。

3.有限元分析的基本步骤;一般完整的有限元程序包含前置处理、解题程序和后置处理。

前置处理:(1)建立有限元素模型;(2)材料特性;(3)元素切割的产生;(4)边界条件;(5)负载条件。

解题程序:(1)元素刚度矩阵计算;(2)系统外力向量的组合;(3)线性代数方程的求解;(4)通过资料反算法求应力、应变、反作用等。

后置处理:将解题部分所得的解答如变位、应力、反力等资料,通过图形接口以各种不同表示方式把等位移图、等应力图等显示出来。

弹性力学与材料力学课程的区别(1)研究对象材料力学:研究杆、梁、柱、轴等杆状构件(长度远大于厚度和宽度的构件) ,一维数学问题求解的基本方程是常微分方程。

弹性力学:一般弹性实体结构,三维弹性固体、板状结构、杆件等。

“完全弹性”是对弹性体变形的抽象。

完全弹性使得物体变形成为一种理想模型。

完全弹性是指在一定温度条件下,材料的应力和应变之间一一对应的关系。

材料的应力和应变关系通常称为本构关系(物理关系或者物理方程)弹性体分为线性弹性体和非线性弹性体弹性力学基本假设1.连续性假设2.均匀性假设3.各向同性假设4.完全弹性假设5.小变形假设6.无初始应力假设2. 均匀性假设假设弹性物体是由同一类型的均匀材料组成的。

因此物体各个部分的物理性质都是相同的,不随坐标位置的变化而改变。

即物体的弹性性质处处都是相同的。

工程材料,例如混凝土颗粒远远小于物体的几何形状,并且在物体内部均匀分布,从宏观意义上讲,也可以视为均匀材料。

对于环氧树脂基碳纤维复合材料,不能处理为均匀材料。

3. 各向同性假设假定物体在各个不同的方向上具有相同的物理性质,这就是说物体的弹性常数将不随坐标方向的改变而变化。

宏观假设,材料性能是显示各向同性。

当然,像木材,竹子以及纤维增强材料等,属于各向异性材料。

这些材料的研究属于复合材料力学研究的对象。

完全弹性分为线性和非线性弹性,弹性力学研究限于线性的应力与应变关系。

研究对象的材料弹性常数不随应力或应变的变化而改变。

——服从胡克定律5. 小变形假设假设在外力或者其他外界因素(如温度等)的影响下,物体的变形与物体自身几何尺寸相比属于高阶小量。

在弹性体的平衡等问题讨论时,可以不考虑因变形所引起的尺寸变化。

忽略位移、应变和应力等分量的高阶小量,使基本方程成为线性的偏微分方程组。

有限元复习提纲第一章1、有限元法是分析连续体的一种近似计算方法,简言之就是将连续体分割为有限个单元的离体的数值方法。

有限元分析方法是广泛应用于工程实体建模、结构分析与计算的有效方法。

有限元法是一种适用于大型或者复杂物体结构的力学分析与计算的有效方法。

2、有限元法的实现过程:对象离散化----单元分析----构造总体方程----求解方程----输出结果3、建立有限元方程的方法:(1)直接方法:指直接从结构力学引申得到。

直接方法具有过程简单、物理意义明确、易于理解等特点。

(2)变分方法:常用方法之一,主要用于线性问题的模型建立。

(3)加权残值法:对于线性自共轭形式方程,加权残值法可得到和变分法相同的结果,如对称的刚度矩阵。

4、有限元法的基本变量:有限元分析过程中的常用变量包括体力、面力、应力、位移和应变等体力:指分布在物体体积内部各个质点上的力,如重力、惯性力等。

面力:指分布在物体表面上的力。

如风力、接触力、流体力、阻力等。

应力:指在外力作用下其物体产生的内力。

位移:指节点的移动。

在约束条件下的节点位移称作虚位移,是指可能发生的位移。

应变:指在外力作用下其物体发生的相对变形量。

是无量纲的变量。

线段单位长度的伸缩,称为正应变。

在直角坐标中所取单元体为正六面体时,单元体的两条相互垂直的棱边,在变形后直角改为变量定义为剪应变、角应变或切应变。

切应变以直角减少为正,反之为负。

5、正应力和剪应力的概念第二章1、ANSYS软件的使用主要包括4方面:初初始设置、前处理、求解计算和后处理。

2、前处理主要包括:①单元类型选择; ②定义材料参数;③建立几何模型;④划分单元网格;⑤设置约束条件和施加外载荷等3、单元实常数的定义。

实常数是有限元分析过程中需要用到单元类型的补充几何特性如杆单元的横截面积、梁单元的横截面积和惯性矩、板壳单元的厚度等等,是计算求解的重要参数。

4、弹性模量和泊松比弹性模量:E=σ/ε材料在单向受拉或受压时,纵向正应力σ=F/A与线应变ε=?l/l 的比值,其单位与应力的单位相同泊松比:μ=|ε′/ε|,材料在单向受拉或受压时,横向正应变ε′=?b/b 与纵向正应变ε=?l/l 之比的绝对值。

有限元知识点归纳1.、有限元解的特点、原因?答:有限元解一般偏小,即位移解下限性原因:单元原是连续体的一部分,具有无限多个自由度。

在假定了单元的位移函数后,自由度限制为只有以节点位移表示的有限自由度,即位移函数对单元的变形进行了约束和限制,使单元的刚度较实际连续体加强了,因此,连续体的整体刚度随之增加,离散后的刚度较实际的刚度K为大,因此求得的位移近似解总体上将小于精确解。

2、形函数收敛准则(写出某种单元的形函数,并讨论收敛性)P49(1)在节点i处N i=1,其它节点N i=0;(2)在单元之间,必须使由其定义的未知量连续;(3)应包含完全一次多项式;(4)应满足∑Ni=1以上条件是使单元满足收敛条件所必须得。

可以推证,由满足以上条件的形函数所建单元是完备协调的单元,所以一定是收敛的。

4、等参元的概念、特点、用时注意什么?(王勖成P131)答:等参元—为了将局部坐标中几何形状规则的单元转换成总体(笛卡尔)坐标中的几何形状扭曲的单元,以满足对一般形状求解域进行离散化的需要,必须建立一个坐标变换。

即:为建立上述的变换,最方便的方法是将上式表示成插值函数的形式,即:其中m是用以进行坐标变换的单元节点数,xi,yi,zi是这些结点在总体(笛卡尔)坐标内的坐标值,Ni’称为形状函数,实际上它也是局部坐标表示的插值函数。

称前者为母单元,后者为子单元。

还可以看到坐标变换关系式和函数插值表示式:在形式上是相同的。

如果坐标变换和函数插值采用相同的结点,并且采用相同的插值函数,即m=n,Ni’=Ni,则称这种变换为等参变换。

5、单元离散?P42答:离散化既是将连续体用假想的线或面分割成有限个部分,各部分之间用有限个点相连。

每个部分称为一个单元,连接点称为结点。

对于平面问题,最简单、最常用的离散方式是将其分解成有限个三角形单元,单元之间在三角形顶点上相连。

这种单元称为常应变三角形单元。

常用的单元离散有三节点三角形单元、六节点三角形单元、四节点四边形单元、八节点四边形单元以及等参元。

有限元考试复习资料(含习题答案)1试说明用有限元法解题的主要步骤。

(1)离散化:将一个受外力作用的连续弹性体离散成一定数量的有限小的单元集合体,单元之间只在结点上互相联系,即只有结点才能传递力。

(2)单元分析:根据弹性力学的基本方程和变分原理建立单元结点力和结点位移之间的关系。

(3)整体分析:根据结点力的平衡条件建立有限元方程,引入边界条件,解线性方程组以及计算单元应力。

(4)求解方程,得出结点位移(5)结果分析,计算单元的应变和应力。

2.单元分析中,假设的位移模式应满足哪些条件,为什么?要使有限元解收敛于真解,关键在于位移模式的选择,选择位移模式需满足准则:(1)完备性准则:(2)连续性要求。

P210面简单地说,当选取的单元既完备又协调时,有限元解是收敛的,即当单元尺寸趋于0时,有限元解趋于真正解,称此单元为协调单元;当单元选取的位移模式满足完备性准则但不完全满足单元之间的位移及其导数连续条件时,称为非协调单元。

3.什么样的问题可以用轴对称单元求解?在工程问题中经常会遇到一些实际结构,它们的几何形状、约束条件和外载荷均对称某一固定轴,我们把该固定轴称为对称轴。

则在载荷作用下产生的应力、应变和位移也都对称此轴。

这种问题就称为轴对称问题。

可以用轴对称单元求解。

4.什么是比例阻尼?它有什么特点?其本质反映了阻尼与什么有关?答:比例阻尼:由于多自由度体系主振型关于质量矩阵与刚度矩阵具有正交性关系,若主振型关于阻尼矩阵亦具有正交性,这样可对多自由度地震响应方程进行解耦分析。

比例阻尼的特点为具有正交性。

其本质上反应了阻尼与结构物理特性的关系。

5.何谓等参单元?等参单元具有哪些优越性?①等参数单元(简称等参元)就是对坐标变换和单元内的参变量函数(通常是位移函数)采用相同数目的节点参数和相同的插值函数进行变换而设计出的一种单元。

①优点:可以很方便地用来离散具有复杂形体的结构。

由于等参变换的采用使等参单元特性矩阵的计算仍在单元的规则域内进行,因此不管各个积分形式的矩阵表示的被积函数如何复杂,仍然可以方便地采用标准化的数值积分方法计算。

1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.4、平面刚架结构在外力的作用下,横截面上的内力有轴力、剪力、弯矩 .5、进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角6、平面刚架有限元分析,节点位移有轴向位移、横向位移、转角。

7、在弹性和小变形下,节点力和节点位移关系是线性关系。

8、弹性力学问题的方程个数有15个,未知量个数有15个。

9、弹性力学平面问题方程个数有8,未知数8个。

10、几何方程是研究应变和位移之间关系的方程11、物理方程是描述应力和应变关系的方程12、平衡方程反映了应力和体力之间关系的13、把经过物体内任意一点各个截面上的应力状况叫做一点的应力状态14、9形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_15、形函数是_三角形_单元内部坐标的_线性_函数,他反映了单元的_位移_状态16、在进行节点编号时,同一单元的相邻节点的号码差尽量小.17、三角形单元的位移模式为_线性位移模式_-18、矩形单元的位移模式为__双线性位移模式_19、在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性20、单元刚度矩阵描述了_节点力_和_节点位移之间的关系21、矩形单元边界上位移是连续变化的1. 诉述有限元法的定义答:有限元法是近似求解一般连续场问题的数值方法2. 有限元法的基本思想是什么答:首先,将表示结构的连续离散为若干个子域,单元之间通过其边界上的节点连接成组合体。

其次,用每个单元内所假设的近似函数分片地表示求解域内待求的未知厂变量。

3. 有限元法的分类和基本步骤有哪些答:分类:位移法、力法、混合法;步骤:结构的离散化,单元分析,单元集成,引入约束条件,求解线性方程组,得出节点位移。

4. 有限元法有哪些优缺点答:优点:有限元法可以模拟各种几何形状复杂的结构,得出其近似解;通过计算机程序,可以广泛地应用于各种场合;可以从其他CAD软件中导入建好的模型;数学处理比较方便,对复杂形状的结构也能适用;有限元法和优化设计方法相结合,以便发挥各自的优点。

对无限求解域问题没有较好的处理办法。

尽管现有的有限元软件多数使用了网络自适应技术,但在具体应用时,采用什么类型的单元、多大的网络密度等都要完全依赖适用者的经验。

5. 梁单元和平面钢架结构单元的自由度由什么确定答:由每个节点位移分量的总和确定6. 简述单元刚度矩阵的性质和矩阵元素的物理意义答:单元刚度矩阵是描述单元节点力和节点位移之间关系的矩阵单元刚度矩阵中元素aml的物理意义为单元第L个节点位移分量等于1,其他节点位移分量等于0时,对应的第m个节点力分量。

7. 有限元法基本方程中的每一项的意义是什么P14答:Q——整个结构的节点载荷列阵(外载荷、约束力);整个结构的节点位移列阵;结构的整体刚度矩阵,又称总刚度矩阵。

9. 简述整体刚度矩阵的性质和特点P14答:对称性;奇异性;稀疏性;对角线上的元素恒为正。

10 简述整体坐标的概念P25答:在整体结构上建立的坐标系叫做整体坐标,又叫做统一坐标系。

11. 简述平面钢架问题有限元法的基本过程答:1)力学模型的确定,2)结构的离散化,3)计算载荷的等效节点力,4)计算各单元的刚度矩阵,5)组集整体刚度矩阵,6)施加边界约束条件,7)求解降价的有限元基本方程,8)求解单元应力,9)计算结果的输出。

12. 弹性力学的基本假设是什么。

答:连续性假定,弹性假定,均匀性和各向同性假定,小变形假定,无初应力假定。

13.弹性力学和材料力学相比,其研究方法和对象有什么不同。

答:研究对象:材料力学主要研究杆件,如柱体、梁和轴,在拉压、剪切、弯曲和扭转等作用下的应力、形变和位移。

弹性力学研究各种形状的弹性体,除杆件外,还研究平面体、空间体,板和壳等。

因此,弹性力学的研究对象要广泛得多。

研究方法:弹性力学和材料力学既有相似之外,又有一定区别。

弹性力学研究问题,在弹性体区域内必须严格考虑静力学、几何学和物理学三方面条件,在边界上严格考虑受力条件或约束条件,由此建立微分方程和边界条件进行求解,得出较精确的解答。

而材料力学虽然也考虑这几方面的条件,但不是十分严格的,材料力学只研究和适用于杆件问题。

14. 简述圣维南原理。

答;把物体一小部分上的面力变换为分布不同但静力等效的面力,但影响近处的应力分量,而不影响远处的应力。

“局部影响原理”15.平面应力问题和平面应变问题的特点和区别各是什么?试各举出一个典型平面应力和平面应变的问题的实例。

答:平面应力问题的特点:长、宽尺寸远大于厚度,沿板面受有平行板的面力,且沿厚度均匀分布,体力平行于板面且不沿厚度变化,在平板的前后表面上无外力作用平面应变问题的特点:Z向尺寸远大于x、y向尺寸,且与z轴垂直的各个横截面尺寸都相同,受有平行于横截面且不沿z向变化的外载荷,约束条件沿z向也不变,即所有内在因素的外来作用都不沿长度变化。

区别:平面应力问题中z方向上应力为零,平面应变问题中z方向上应变为零、应力不为零。

举例:平面应力问题等厚度薄板状弹性体,受力方向沿板面方向,荷载不沿板的厚度方向变化,且板的表面无荷载作用。

平面应变问题——水坝用于很长的等截面四柱体,其上作用的载荷均平行于横截面,且沿柱长方向不变法。

16. 三角形常应变单元的特点是什么?矩形单元的特点是什么?写出它们的位移模式。

答:三角形单元具有适应性强的优点,较容易进行网络划分和逼近边界形状,应用比较灵活。

其缺点是它的位移模式是线性函数,单元应力和应变都是常数,精度不够理想。

矩形单元的位移模式是双线性函数,单元的应力、应变式线性变化的,具有精度较高,形状规整,便于实现计算机自动划分等优点,缺点是单元不能适应曲线边界和斜边界,也不能随意改变大小,适用性非常有限。

17. 写出单元刚度矩阵表达式、并说明单元刚度与哪些因素有关。

答:单元刚度矩阵与节点力坐标变换矩阵,局部坐标系下的单元刚度矩阵,节点位移有关的坐标变换矩阵。

18. 如何由单元刚度矩阵组建整体刚度矩阵(叠加法)?答:(1)把单元刚度矩阵扩展成单元贡献矩阵,把单元刚度矩阵中的子块按其在整体刚度矩阵中的位置排列,空白处用零子块填充。

(2)把单元的贡献矩阵的对应列的子块相叠加,即可得出整体刚度矩阵。

19. 整体刚度矩阵的性质。

答:(1)整体刚度矩阵中每一列元素的物理意义为:欲使弹性体的某一节点沿坐标方形发生单位为移,而其他节点都保持为零的变形状态,在各节点上所需要施加的节点力;(2)整体刚度矩阵中的主对角元素总是正的;(3)整体刚度矩阵是一个对称阵;(4)整体刚度矩阵式一个呈带状分布的稀疏性矩阵。

(5)整体刚度矩阵式一个奇异阵,在排除刚体位移后,他是正定阵。

20. 简述形函数的概念和性质。

答:形函数的性质有:(1)形函数单元节点上的值,具有“本点为一、他点为零”的性质;(2)在单元的任一节点上,三角函数之和等于1;(3)三角形单元任一一条边上的形函数,仅与该端点节点坐标有关,而与另外一个节点坐标无关;(4)型函数的值在0~1之间变换。

21. 结构的网格划分应注意哪些问题.如何对其进行节点编号。

才能使半带宽最小。

P50,P8相邻节点的号码差最小答:一般首选三角形单元或等参元。

对平直边界可选用矩形单元,也可以同时选用两种或两种以上的单元。

一般来说,集中力,集中力偶,分布在和强度的突变点,分布载荷与自由边界的分界点,支撑点都应该取为节点,相邻节点的号码差尽可能最小才能使半带宽最小22. 为了保证解答的收敛性,单元位数模式必须满足什么条件?答:(1)位移模式必须包含单元刚体位移;(2)位移模式必须包含单元的常应变;(3)位移模式在单元内要连续,且唯一在相邻单元之间要协调。

在有限单元法中,把能够满足条件1和条件2的单元称为完备单元,把满足条件3的单元叫做协调单元或保续单元。

23 有限元分析求得的位移解收敛于真实解得下界的条件。

答:1.位移模式必须包含单元的刚体位移,2.位移模式必须包含单元的常应变,3.位移模式在单元内要连续,且位移在相邻单元之间要协调。

24. 简述等参数单元的概念。

答:坐标变换中采用节点参数的个数等于位移模式中节点参数的个数,这种单元称为等参单元。

25. 有限元法中等参数单元的主要优点是什么?答:1)应用范围广。

在平面或空间连续体,杆系结构和板壳问题中都可应用。

2)将不规则的单元变化为规则的单元后,易于构造位移模式。

3)在原结构中可以采用不规则单元,易于适用边界的形状和改变单元的大小。

4)可以灵活的增减节点,容易构造各种过度单元。

5)推导过程具有通用性。

一维,二维三维的推导过程基本相同。

26. 简述四节点四边形等参数单元的平面问题分析过程。

答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵(4)用虚功原理球的单元刚度矩阵,,最后用高斯积分法计算完成。

27. 为什么等参数单元要采用自然坐标来表示形函数?为什么要引入雅可比矩阵?答:简化计算得到形函数的偏导关系。

28.ANSYS软件主要包括哪些部分?各部分的作用是什么?答:1.前处理模块:提供了一个强大的实体建模及网络划分工具,用户可以方便地构造有限元模型。

2.分析计算模块:包括结构分析、流体力学分析、磁场分析、声场分析、压电分析以及多种物理场的耦合分析,可以模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

3.后处理模块:可将计算后果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示等图形方式显示出来,也可将计算结果以图表、曲线形式显示出来或输出。

29.ANSYS软件提供的分析类型有哪些?答:结构静力分析、机构动力分析、结构非线性分析、动力学分析、热分析、流体力学分析、电磁场分析、声场分析、压电分析。

30.简述ANSYS软件分析静力学问题的基本流程。

答:1.前处理器:1)定义单元类型,2)定义实常数,3)定义材料属性,4)创建实体几何模型,5)划分网络;2.求解器:1)定义分析类型,2)施加载荷和位移约束条件,3)求解;三角形三节点单元的位移是连续的,应变和应力在单元内是常数,因而其相邻单元将具有不同的应力和应变,即在单元的公共边界上和应变的值将会有突变。

THE END
0.汶川映秀MS8.0地震的地球物理场与动力过程120朱守彪,石耀霖用遗传有限单元法反演川滇下地壳流动对上地壳的拖曳作用[J];地球物理学报;2004年02期 121孙洁,晋光文,白登海,王立凤青藏高原东缘地壳、上地幔电性结构探测及其构造意义[J];中国科学(D辑:地球科学);2003年S1期 122李松林,张先康,张成科,赵金仁,成双喜玛沁—兰州—靖边地震测深剖面地壳速度结构的初jvzquC41yy}/ewpk0eun0ls1Ctzjeuj1ELLEVxycn/QYVK723:7:29<0jvs
1.残余应力场,residualstressfield,音标,读音,翻译,英文例句,英语以红河断裂带测区为例,用X射线法测量了测区的古构造残余应力场及其应变能密度场,用有限单元法计算了测区在两种边界条件下的水平最大剪应力场,用实验和理论证明了古构造残余主压应力大小和方向对岩石破坏、破裂扩展和震级的影响。 更多例句>> 2) Residual Stress-Strain Field jvzq<84yyy4eklycnn4dqv4kpf{02;712474::6F2HL/j}r
2.表面裂纹的三维模拟及应力强度因子计算viminlove裂纹前缘的应力场存在一个数学上无限大的奇异点,一般多项式有限元很难模拟,除非在裂纹前缘附近用很小很密的单元。而且有时可能行不通,当计算机资源受到限制时效率很差。为了模拟裂纹前缘应力和位移的特性,70年代中期,亨舍尔(Henshell)、邵(Shaw,1975)和巴索姆(Barsoum,1977)各自独立地构造了一种裂纹前缘单元(也称奇jvzquC41dnuh0|npc0ipo7hp1u5cnxla9991::gh2363x@kf0jznn
3.首都圈地区跨断层形变观测与地壳应力场期刊基于地震观测资料的构造应力场反演方法与应用研究[D].2015. [4] 和平.有限单元法在跨断层水准变化机理研究中的应用[D].2010. [5] 和平,李志雄,陆远忠,等.有限单元法在首都圈地区跨断层水准测量监测能力初步评价中的应用[J].地震.2010,(2).DOI:10.3969/j.issn.1000-3274.2010.02.011 . [6] 曹建玲,jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1f|j{495926614