哈佛大学锁志刚教授与西安交大卢同庆教授合作:韧性水凝胶在循环载荷下的裂纹敏感性

自1960年代以来,合成水凝胶已被开发并广泛应用于组织工程、药物运输、医用粘接剂、生物电子、亲水涂层、柔性机器人等。在许多承载的应用场景中,要求水凝胶能够承受长期的循环载荷,例如,人工心脏瓣膜每年需要打开和关闭约3亿次;膝盖关节软骨需承受幅值约2.5MPa的循环应力;透明扬声器之类的水凝胶离子设备需要承受高频振动;可拉伸的离子触摸板需要承受周期性变形。在循环载荷作用下,水凝胶会表现出疲劳特征,包括模量、强度的退化,内部裂纹的成核和生长等。近年来,哈佛大学锁志刚教授与西安交通大学软机器实验室团队在水凝胶疲劳领域开展了深入的研究,在水凝胶疲劳性能的实验测试与理论分析[1]、疲劳门槛值的提升策略[2, 3]、界面抗疲劳设计[4, 5]等方面取得研究进展。

图1 两种疲劳测试方法。(a)预置裂纹的试样受到循环拉伸,记录在不同能量释放率下裂纹扩展的速率。(b)无预置裂纹的试样受到循环拉伸,记录在不同拉伸幅值λ下试样循环直至断裂的循环次数N。

材料的疲劳测试主要有两大类方法。一种是在试样中预置裂纹,施加循环载荷并记录裂纹扩展速率(图1a)。当施加的能量释放率G低于疲劳门槛值Gth时,裂纹不扩展。从2017年开始,水凝胶疲劳测试主要基于这类方法,对所测试的各类水凝胶的疲劳门槛值进行实验测试和理论分析。另一种疲劳测试方法是对不带裂纹试样进行循环加载拉伸至给定的拉伸比幅值λ或应力幅值,记录其断裂的循环数N(图1b)。当施加的拉伸比低于疲劳极限拉伸比λe时,试样被认为能够承受无数次循环拉伸而不发生断裂。本文采用第二类测试方法,以经典的双网络韧性水凝胶为对象,实验测量并分析材料的λ-N曲线特征,重点关注不含裂纹的试样的λ-N曲线和含不同裂纹尺寸的试样的λ-N曲线的不同,如图2所示。为了获得断裂循环次数的统计结果,采用六个相同的试样(不含裂纹或含相同尺寸的裂纹)同时拉伸的测试方法。

图2 疲劳测试的λ-N曲线。每次疲劳实验中,六个相同的试样(不含裂纹或含相同尺寸的裂纹)在给定的拉伸幅值下循环受载,每个试样的拉伸幅值和断裂循环次数对应图中的一个点。材料的疲劳极限拉伸比是试样中的初始裂纹尺寸的函数。

研究发现,当初始裂纹较长时,韧性水凝胶的疲劳极限随着裂纹长度的增加而降低;当初始裂纹较短时,韧性水凝胶的疲劳极限对初始裂纹尺寸不敏感。测试结果表明该水凝胶在循环载荷下的裂纹敏感尺寸约为0.1mm。他们将这一敏感尺寸解释为材料的固有属性常数,称作endurance fractocohesive length,其大小由另外两个材料的固体常数决定,材料的疲劳门槛值Gth和材料在达到循环疲劳极限条件下的断裂功We(o),其中系数k由材料的本构关系和待测试样的几何特征决定。通过实验测量韧性水凝胶的疲劳门槛值和循环疲劳极限条件下的断裂功,代入如上公式估算得到的该材料的裂纹敏感尺寸为0.1mm量级,与实验相符。他们还讨论了各类工程材料在循环载荷下的这两个材料常数的取值范围以及所对应的裂纹敏感尺寸。

实验结果

1 单轴拉伸下的断裂

他们采用聚丙烯酰胺(PAAm)-聚-2丙烯酰胺-2甲基丙磺酸(PAMPS)双网络韧性水凝胶进行裂纹敏感性测试。他们先单调拉伸不带裂纹以及带裂纹的水凝胶试样,获得不同裂纹长度对应的应力-拉伸比曲线,断裂拉伸比λc,断裂应力Sc以及断裂功Wc(由积分应力-拉伸比曲线得到),这些断裂属性都是裂纹长度c的函数。当初始裂纹较小时(65μm),测量的断裂属性与无预置裂纹的试样相近,而当初始裂纹较大时,断裂属性随裂纹长度增加而明显降低。

图3 承受单调拉伸的不带裂纹的试样以及带不同长度裂纹的试样的断裂。(a)应力-拉伸比曲线。(b)断裂拉伸比-裂纹长度平面。(c)断裂应力-裂纹长度平面。(d)断裂功-裂纹长度平面。

他们通过变异系数CV(标准差除以平均值)来衡量测量数据的分散性。无论是带裂纹试样还是不带裂纹试样,断裂拉伸比λc,断裂应力Sc,断裂功Wc以及刚度M的变异系数都很小(小于0.1)。尤其是,断裂属性的分散性程度与材料的刚度分散性相当,因此可以认为所测量的材料属性为材料常数。由此得到,不带裂纹试样的断裂功这一材料常数WC(o)为5.87×106J/m3。该韧性水凝胶的另一材料常数断裂能在此前的工作中测量GC=2550J/m2。

图4 单调载荷下带裂纹与不带裂纹试样的断裂拉伸比,断裂应力,断裂功以及刚度的变异系数。

对于带裂纹试样且裂纹长度远小于试样尺寸,能量释放率G有G=κWc,其中c为裂纹长度,W为远离裂尖的弹性能密度,κ为一个无量纲数。当试样断裂时,断裂能Gc有Gc=κWcc。材料裂纹敏感尺寸可由得到。当材料为线弹性且试样为边缘裂纹时,κ的值为2π(1.122)2,由此得到该材料在单调载荷下的裂纹敏感尺寸为0.05mm,与实验观测到的裂纹尺寸敏感性基本相符。

2 循环拉伸下的断裂

他们循环拉伸不带裂纹以及带裂纹的水凝胶试样,获得不同裂纹长度对应的疲劳极限下的应力-拉伸比曲线,疲劳极限拉伸比λe,疲劳极限应力Se以及疲劳极限条件下的断裂功We,这些疲劳极限属性都是裂纹长度c的函数。当初始裂纹较小时(65μm),测量的疲劳极限属性与无预置裂纹的试样相近,而当初始裂纹较大时,疲劳极限属性随裂纹长度增加而明显降低。不带裂纹试样在疲劳极限条件下的断裂功We(o)这一材料常数为1.02×105J/m3。该韧性水凝胶的另一材料常数疲劳门槛值在此前的工作中测量为Gth=114.2J/m2。

对于带裂纹试样且裂纹长度远小于试样尺寸,能量释放率G有G=κWc,当试样达到疲劳极限时,疲劳门槛值Gth有Gc=κWec。循环载荷下材料裂纹敏感尺寸可由得到。当材料为线弹性且试样为边缘裂纹时,κ的值为2π(1.122)2,由此估算得到该材料在循环载荷下的裂纹敏感尺寸为,与实验观测到的裂纹尺寸敏感性基本相符。

图5 承受循环拉伸的不带裂纹的试样和带不同长度裂纹的试样的疲劳极限。(a)疲劳极限拉伸比-裂纹长度平面。(b) 达到疲劳极限时的应力-拉伸比曲线。(c)疲劳极限应力-裂纹长度平面。(d)疲劳极限条件下的断裂功-裂纹长度平面。

3 材料属性空间

承受循环载荷时,当初始裂纹长度大时,试样抵抗裂纹扩展的能力用疲劳门槛值Gth描述。当初始裂纹长度小,对裂纹不敏感时,抵抗疲劳断裂用不带裂纹试样在疲劳极限条件下的断裂功描述We(o)。研究人员从文献中收集得到弹性体,塑料,陶瓷,金属的Gth和We(o)数据。这两个材料常数的比值定义了endurance fractocohesive length,用斜虚线表示。陶瓷的endurance fractocohesive length在10-4m这个量级。金属和文中的韧性水凝胶的endurance fractocohesive length在10-3m这个量级。

图6 用不带裂纹试样测得的疲劳极限条件下的断裂功We(o)与用带裂纹试样测得的疲劳门槛值Gth构成的材料属性平面。斜虚线为endurance fractocohesive length,Gth/We(o)。

4 结论

他们研究了双网络韧性水凝胶带裂纹与不带裂纹、在单调载荷和循环载荷下的断裂行为。单调载荷下,测试了不同裂纹长度c对应的断裂拉伸比λc,断裂应力Sc以及断裂功Wc。当初始裂纹较短时,断裂功是材料常数,Wc(o),对初始裂纹不敏感。当初始裂纹较长,断裂能是材料常数Gc。两个材料常数的比值定义了另一材料常数fractocohesive length,Gc/Wc(o),单调载荷下裂纹敏感尺寸为。循环载荷下,他们测试了不同裂纹长度c对应的疲劳极限拉伸比λe,疲劳极限应力Se以及疲劳极限条件下的断裂功We。当初始裂纹较短时,疲劳极限条件下的断裂功是材料常数,We(o),对初始裂纹不敏感。当初始裂纹较长,疲劳门槛值是材料常数Gth。两个材料常数的比值定义了另一材料常数endurance fractocohesive length,Gth/We(o),循环载荷下裂纹敏感尺寸为。循环载荷下软材料的裂纹敏感尺寸这一重要的材料参数对指导抗疲劳软结构的设计具有重要意义。

这一研究工作最近发表在Journal of the Mechanics and Physics of Solids。论文的第一作者为西安交通大学航天航空学院博士研究生周一帆,西安交通大学卢同庆教授和美国科学院院士、美国工程院院士、哈佛大学锁志刚教授为共同通讯作者。

原文链接:

Zhou et al. Flaw-sensitivity of a tough hydrogel under monotonic and cyclic loads. Journal of the Mechanics and Physics of Solids. 2021.

THE END
0.孙博华院士团队:意大利面条动力断裂的断裂段数问题断成几段呢?针对这一挑战,西安建筑科技大学力学技术研究院孙博华教授团队开展了针对意面断裂的相关研究,给出了预测意面断裂极限曲率公式和预测断裂段数的公式。相关工作于2022年以 ”On the Number of Fractured Segments of Spaghetti Breaking Dynamics“ 发表在期刊《Theoretical & Applied Mechanics Letters》。jvzquC41koz/zjzcv0kew7hp1ktgq8622:543?70jvs
1.极限断裂荷载英文怎么写极限断裂荷载英语怎么说及英文单词in the ultimate 到最后, 终于 ultimate reversion 【法】 最终归属权 ultimate temperature 【化】 极限温度 ultimate user 【计】 最终用户 ultimate analysis n.[化]最后分析,元素分析 ultimate consumer 最后消费者 ultimate depth 最终深度 ultimate destination 最终到达 ultimate pinna 末级羽片 ultimate range 极jvzquC41o0nvlrfpi0ipo8hkmw5xa==686;`/@882;:44:4
2.高强铝板韧性断裂准则参数求解及其成形极限期刊[1]曹秒艳,李建超,苑亚宁,等.基于DEM-FEM的AZ31B板材软模成形极限预测[J].中国有色金属学报.2017,(4).DOI:10.19476/j.ysxb.1004.0609.2017.04.001. [2]刘雨桐,袁朝龙,吴任东,等.基于压缩试验法的P91韧性断裂行为研究[J].中国机械工程.2016,(16).DOI:10.3969/j.issn.1004-132X.2016.16.022. jvzquC41f0}bpofpifguc7hqo0io1yjtkqjjejq1|itl|}d42812=528
3.弯曲测试有多种行业标准,主要基于被测样品材料,弯曲测试通常涉及测量样品材料的延展性。弯曲测试可能涉及将样品材料带到特定极限并确定负载测量及其与负载规范的关系(通过/失败)。或者,它可能涉及弯曲材料直到材料经历断裂,并确定启动断裂极限所需的载荷和挠度。 显示三点弯曲强度测试的典型图表: jvzq<84yyy4tv6lh0eun1npygt{kzp156:0qyon
4.汽车用先进高强钢板材断裂性能研究进展检测资讯相比于以GTN 和CDM 为代表的复杂耦合型损伤模型,非耦合型断裂模型的材料参数较少且参数的测定过程较为简单,更适用于工业应用。非耦合型断裂模型的出发点在于认定材料性能和承载过程中载荷对材料造成的损伤之间没有关系,损伤因子通过对等效应变,即对0→断裂极限应变进行积分求得。针对损伤因子的获取,如式(9)所示。 jvzq<84o0ctzvnxvkpm/exr1pg}t1:>648?50qyon
5.工学院韦小丁课题组首次实验证明金属达到理论强度极限追求材料的理论极限强度是人类的永恒目标。理论极限强度,是指材料发生断裂破坏所需机械应力的理论上限值,通常在E/10左右(E为杨氏模量)。从2008年科学家通过实验首次验证单层石墨烯的断裂强度达到理论极限强度值以来,碳纳米管、单晶金刚石、新型二维材料等一系列准脆性材料在极限尺寸下被实验证明可以达到理论极限强度。然jvzquC41pg}t0ypw0gjv0ls1lzqz1l8ghf91ej56e6;2hB8:8d859n73;7h767mvo
6.【科研动态】剪不断、理还乱——论液池中液桥的拉伸右侧两项分别代表初始静态高度和动态断裂长度。断裂长度存在无重力极限和静态极限,且具有一无重力拉伸区间,其拉伸相图如下。 机理分析 一个典型的拉伸过程如图所示,(a)线性坐标轮廓,(b)对数坐标轮廓,(c)轴向速度。 以(b)中的虚线为界,拉伸过程可以分为延性阶段和毛细阶段:在延性阶段中,液桥以相似的模式发展;在毛jvzq<84umnugr7lw0kew7hp1uqm1;5431693:4e4:627j7636=578ucig4ivv
7.什么是“洛希极限”?洛希极限是怎样计算出来的?不过,对于气体来讲,本身就是浮于表面,容易被吸引,所以流体的洛希极限要比刚体的洛希极限大一些。就像《流浪地球》中的那样,地球的大气早在进入刚体洛希极限之前,就开始被吸走了,如上图所示。 实际上,洛希极限可以分成三大类:流体、刚体和弹性体。由于刚体的洛希极限并不涉及自身的损伤断裂,所以刚体的洛希极限并不是jvzquC41o0wjpzg326/exr1|jkkkjsi1pkxu8l|13;27?;0jvsm
8.CAERI智库丨面向汽车碰撞安全的热成形钢断裂失效表征与验证目前常用的断裂失效准则有成形极限图(Form-ing Limit Diagram,FLD)、Johnson-Cook断裂准则及Gissmo失效模型等。研究表明,材料在不同的应力状态下的断裂应变差异显著。Johnson-Cook 断裂准则以线性方式计算损伤积累,在模拟碰撞断裂时精度均不高。Gissmo失效模型由于同时考虑了材料在不同应力状态下的失效应变以及应变路径对失jvzquC41yy}/c~yq/vktvrsi0pku1wjyu1yiq€2334=387mvon
9.某风电场机组叶片断裂原因分析由弯曲试验 数据(表 5)可知,缺陷样块的弯曲强度仅为正常样块弯 曲强度的 67.97%;而弯曲模量比正常样块大 9.13%。弯曲强度降低,使得辅梁的抗剪切能力严重下降;而弯曲模量 值越大,表示材料在弹性极限内抵抗弯曲变形能力相对越 小,实验数据表明辅梁出现褶皱后,降低了本身的抗变形 能力。jvzq<84yyy4i|ƒ|f|0ipo8hp1pkxu86370nuo