JoyPy 是一个基于 matplotlib + pandas 的单功能 Python 包,它的唯一目的是绘制山脊线图 Joyplots(也称为 Ridgeline Plots)。
Joyplots 是堆叠的、部分重叠的密度图,就是这么简单。它们是一种很好的绘制数据的方式,可以用来直观比较分布,特别是哪些随着一个维度(比如时间)变化的分布。虽然这并不是一种新技术。
安装 joypy,使用 pip install joypy==0.2.6 就好。
在行为差异、特征工程和预测建模等场景中,了解不同组之间的变量分布差异非常有用。在这些情况下,许多数据科学家更喜欢在单一坐标轴上绘制组级分布图,例如直方图或密度图。然而,当群体较多时,简单的组级分布图可能变得混乱且难以理解。
本文将向您介绍一种紧凑而优雅的数据可视化工具:山脊线图。它以清晰的方式展示不同变量或变量类别的分布差异,帮助我们更好地理解数据中的群体特征,从而获得更深入的洞察和启发。
打印特征名称和标签,以及输出标签的 value_counts。
关键参数说明:
kde plot 函数。
实际上,这主要涉及一些 matplotlib 绘图参数。用户还可以直接修改源代码,以调整 X 轴、Y 轴、标题和图例的字体大小,从而使生成的山脊线图更加美观。
山脊线图可视化的效果如下图所示:
正如上图所示,山脊线图不仅展示了每个鸢尾花种类四个特征的分布形状和峰值,还直观地展示了不同种类之间的差异。通过将多个组的分布放置在同一张山脊线图上,并使用不同的颜色或线型进行标识,我们可以轻松比较它们之间的相似性和差异性。
山脊线图(Ridgeline Plots),也被称为 Joy Plots,是一种用于展示一个或多个组的数据分布的数据可视化方法。
THE END