一般规定电力工程电缆设计规范

4.1.1 电缆终端的装置类型的选择,应符合下列规定:1 电缆与六氟化硫全封闭电器直接相连时,应采用封闭式GIS终端。2 电缆与高压变压器直接相连时,应采用象鼻式终端。3 电缆与电器相连且具有整体式插接功能时,应采用可分离式(插接式)终端。4 除上述情况外,电缆与其他电器或导体相连时,应采用敞开式终端。

4.1.2 电缆终端构造类型的选择,应按满足工程所需可靠性、安装与维护简便和经济合理等因素综合确定,并应符合下列规定:1 与充油电缆相连的终端,应耐受可能的最高工作油压。2 与六氟化硫全封闭电器相连的GIS终端,其接口应相互配合;GIS终端应具有与SF6气体完全隔离的密封结构。3 在易燃、易爆等不允许有火种场所的电缆终端,应选用无明火作业的构造类型。4 220kV及以上XLPE电缆选用的终端型式,应通过该型终端与电缆连成整体的标准性资格试验考核。5 在多雨且污秽或盐雾较重地区的电缆终端,宜具有硅橡胶或复合式套管。6 66~110kV XLPE电缆户外终端宜选用全干式预制型。

4.1.3 电缆终端绝缘特性的选择,应符合下列规定:1 终端的额定电压及其绝缘水平,不得低于所连接电缆额定电压及其要求的绝缘水平。2 终端的外绝缘,必须符合安置处海拔高程、污秽环境条件所需爬电比距的要求。

4.1.4 电缆终端的机械强度,应满足安置处引线拉力、风力和地震力作用的要求。

4.1.5 电缆接头的装置类型的选择,应符合下列规定:1 自容式充油电缆线路高差超过本规范第3.5.2条的规定,且需分隔油路时,应采用塞止接头。2 电缆线路距离超过电缆制造长度,且除本条第3款情况外,应采用直通接头。3 单芯电缆线路较长以交叉互联接地的隔断金属层连接部位,除可在金属层上实施有效隔断及其绝缘处理的方式外,其他应采用绝缘接头。4 电缆线路分支接出的部位,除带分支主干电缆或在电缆网络中应设置有分支箱、环网柜等情况外,其他应采用T型接头。5 三芯与单芯电缆直接相连的部位,应采用转换接头。6 挤塑绝缘电缆与自容式充油电缆相连的部位,应采用过渡接头。

4.1.6 电缆接头的构造类型的选择,应按满足工程所需可靠性、安装与维护简便和经济合理等因素综合确定,并应符合下列规定:1 海底等水下电缆的接头,应维持钢铠层纵向连续且有足够的机械强度,宜选用软性连接。2 在可能有水浸泡的设置场所,6kV及以上XLPE电缆接头应具有外包防水层。3 在不允许有火种场所的电缆接头,不得选用热缩型。4 220kV及以上XLPE电缆选用的接头,应由该型接头与电缆连成整体的标准性试验确认。5 66~110kV XLPE电缆线路可靠性要求较高时,不宜选用包带型接头。

4.1.7 电缆接头的绝缘特性应符合下列规定:1 接头的额定电压及其绝缘水平,不得低于所连接电缆额定电压及其要求的绝缘水平。2 绝缘接头的绝缘环两侧耐受电压,不得低于所连接电缆护层绝缘水平的2倍。

4.1.8 电缆终端、接头的布置,应满足安装维修所需的间距,并应符合电缆允许弯曲半径的伸缩节配置的要求,同时应符合下列规定:1 终端支架构成方式,应利于电缆及其组件的安装;大于1500A的工作电流时,支架构造宜具有防止横向磁路闭合等附加发热措施。2 邻近电气化交通线路等对电缆金属层有侵蚀影响的地段,接头设置方式宜便于监察维护。

4.1.9 电力电缆金属层必须直接接地。交流系统中三芯电缆的金属层,应在电缆线路两终端和接头等部位实施接地。

4.1.10 交流单芯电力电缆的金属层上任一点非直接接地处的正常感应电势计算,宜符合本规范附录F的规定。电缆线路的正常感应电势最大值应满足下列规定:1 未采取能有效防止人员任意接触金属层的安全措施时,不得大于50V。2 除上述情况外,不得大于300V。

4.1.11 交流系统单芯电力电缆金属层接地方式的选择,应符合下列规定:1 线路不长,且能满足本规范第4.1.10条要求时,应采取在线路一端或中央部位单点直接接地(图4.1.11-1)。2 线路较长,单点直接接地方式无法满足本规范第4.1.10条的要求时,水下电缆、35kV及以下电缆或输送容量较小的35kV及以上电缆,可采取在线路两端直接接地(图4.1.11-2)。3 除上述情况外的长线路,宜划分适当的单元,且在每个单元内按3个长度尽可能均等区段,应设置绝缘接头或实施电缆金属层的绝缘分隔,以交叉互联接地,(图4.1.11-3)。

4.1.12 交流系统单芯电力电缆及其附件的外护层绝缘等部位,应设置过电压保护,并应符合下列规定:1 35kV以上单芯电力电缆的外护层、电缆直连式GIS终端的绝缘筒,以及绝缘接头的金属层绝缘分隔部位,当其耐压水平低于可能的暂态过电压时,应添加保护措施,且宜符合下列规定:1)单点直接接地的电缆线路,在其金属层电气通路的末端,应设置护层电压限制器。2)交叉互联接地的电缆线路,每个绝缘接头应设置护层电压限制器。线路终端非直接接地时,该终端部位应设置护层电压限制器。3)GIS终端的绝缘筒上,宜跨接护层电压限制器或电容器。2 35kV单芯电力电缆金属层单点直接接地,且有增强护器绝缘保护需要时,可在线路未接地的终端设置护层电压限制器。

4.1.13 护层电压限制器参数的选择,应符合下列规定:1 可能最大冲击电流作用下护层电压限制器的残压,不得大于电缆护层的冲击耐压被1.4所除数值。2 系统短路时产生的最大工频感应过电压作用下,在可能长的切除故障时间内,护层电压限制器应能耐受。切除故障时间应按5s以内计算。3 可能最大冲击电流累积作用20次后,护层电压限制器不得损坏。

4.1.14 护层电压限制器的配置连接,应符合下列规定:1 护层电压限制器配置方式,应按暂态过电压抑制效果、满足工频感应过电压下参数匹配、便于监察维护等因素综合确定,并应符合下列规定:1)交叉互联线路中绝缘接头处护层电压限制器的配置及其连接,可选取桥形非接地Δ、Yo或桥形接地等三相接线方式。2)交叉互联线路未接地的电缆终端、单点直接接地的电缆线路,宜采取Yo接线方式配置护层电压限制器。2 护层电压限制器连接回路,应符合下列规定:1)连接线应尽量短,其截面应满足系统最大暂态电流通过时的热稳定要求。2)连接回路的绝缘导线、隔离刀闸等装置的绝缘性能,不得低于电缆外护层绝缘水平。3)护层电压限制器接地箱的材质及其防护等级应满足其使用环境的要求。

4.1.15 交流系统110kV及以上单芯电缆金属层单点直接接地时,下列任一情况下,应沿电缆邻近设置平行回流线。1 系统短路时电缆金属层产生的工频感应电压,超过电缆护层绝缘耐受强度或护层电压限制器的工频耐压。2 需抑制电缆邻近弱电线路的电气干扰强度。

4.1.16 回流线的选择与设置,应符合下列规定:1 回流线的阻抗及其两端接地电阻,应达到抑制电缆金属层工频感应过电压,并应使其截面满足最大暂态电流作用下的热稳定要求。2 回流线的排列配置方式,应保证电缆运行时在回流线上产生的损耗最小。3 电缆线路任一终端设置在发电厂、变电所时,回流线应与电源中性线接地的接地网连通。

4.1.17 重要回路且可能有过热部位的高压电缆线路,宜设置温度检测装置。

4.1.18 重要交流单芯高压电缆金属层单点直接接地或交叉互联接地时,该电缆线路宜设置护层绝缘监察装置。

条文说明

4.1 一般规定

4.1.1 系原条文4.1.1修改条文。4.1.2 系原条文4.1.2修改条文。电缆终端的构造类型,随电压等级、电缆绝缘类别、终端装置型式等有所差异。在同一电压级的特定绝缘电缆及其终端装置情况下,终端构造方式可能有多种类型。66kV以上自容式充油电缆终端构造已基本定型且种类有限,然而XLPE电缆的终端构造类型较多,其户外式终端、GIS终端的构造类型及其在世界上主要应用概况,列于表l。XLPE电缆远晚于充油电缆运用实践,在逐步提升其应用电压等级的初期,常沿袭后者终端构造型式,其可靠性较易把握;然而在电缆使用增多后,具有注入油/SF6的非干式构造终端,往往感到安装或运行管理较麻烦,且有安装质量等因素出现漏油之类缺陷,促使趋向用干式构造;但干式终端实践历史尚不够长,荷兰150kV电缆系统曾在1993年l天中发生多个干式终端一连串故障,经分析判明是橡胶应力锥与XLPE电缆绝缘间界面问题所导致(详IEEE Electrical Insulation Magazine,Y0l.15,No.4,1999),荷兰于1997年向IEC提出关于界面绝缘评价的试验方法标准化提案,只因基础性研究不够充分尚未被采纳(详见日本《电气学会技术报告》第948号,2004.1),然而,至少可认为,干式终端所含不同绝缘材料间弹性压接的界面压力,长期使用将有自然减小,是否确实不影响绝缘击穿特性,依现行标准试验似还难以充分地评断。这对于电压等级越高其意义显然越需重视。本条文既对各类型终端构造的使用特征归纳出合理选择原则,还基于某些电缆或终端的特点,以条款1、2、3分别示明必要的制约,又按《额定电压150kV(Um=170kV)以上至500kV(Um=550kV)挤出绝缘电力电缆及其附件——试验方法和要求》IEC 62067-2001标准,以条款4提示需具备满足该标准资格试验(国内常称预鉴定试验)为选用前提;另以条款5、6示出并非严格而留有选择余地的推荐内容,它们反映了大多数工程设计的做法或趋向。

表1 66kV及以上XLPE电缆户外式、GIS终端的构造类型及其应用概况

注:1 表中内容摘自2000年日本《电气学会技术报告》第767号“关于海外输电电缆的技术动向”。2 我国的工程实践中序号2、3、6、7、9、10、11、12都有不同程度的应用。

4.1.3 系原条文4.1.3修改条文。一般套管外绝缘的爬电比距要求,在《高压架空线路和发电厂、变电所环境污区分级及外绝缘选择标准》GB/T 16434中有选择方法的规定,电缆终端的套管不应低于其要求。GB/T 16434标准附录B提示影响外绝缘发生污闪的因素,往往随时间推移会出现难以预料的变化,工程设计应给今后运行管理留有适当安全裕度。近年,有论述对东北、华北和河南电网大面积污闪事故分析,除证实必须满足爬电比距标准要求外,还强调500kV级变电设备的爬电比距应高于所在污秽地区的规定值(可参见《电力设备》,Vol,No.4,2001)。电缆终端与一般支持绝缘子在出现闪络击穿事故后的更换影响不同,前者价昂且换装费时,故宜有较大安全裕度。此外,同一盐密度表征的污秽条件下,日本高压电缆终端套管的爬电比距较GB/T 16434规定值要稍大些。综上,本次规范修改以“必须”取代“应”。4.1.4 系原条文4.1.4保留条文。4.1.5 系原条文4.1.5修改条文。本条款3:在275kV及以下单芯XLPE电缆线路,直接对电缆实施金属层开断并做绝缘处理,以减免绝缘接头的设置,为最近欧洲、日本开创的新方法。欧洲是在需要实施交叉互联的局部段,剥切其外护层、金属套和外半导电层,且对露出的该段绝缘层实施表面平滑打磨后,再进行绝缘增强和密封防水处理,形成等效于绝缘接头的功能;日本的方法不同之处只是不切剥外半导电层,从而不存在绝缘层表面的再处理(可参见《广东电缆技术》,2002,No.4)。我国近年在220kV XLPE电缆线路工程已如此实践。这种做法,常被称为假绝缘接头。本条款4:带分支主干电缆(Main cable with branches)(有称预分支电缆)是一种在主干电缆多个特定部位实施工厂化预制分支的特殊形式电缆,它的分支接头,已被纳入该电缆整体,无须另选用T型接头。这种电缆目前我国只有低压级,国外已有6~10kV级,它主要用于高层建筑配电。4.1.6 系原条文4.1.6修改条文。电力电缆,尤其是高压XLPE电缆的接头构造类型较多。接头的装置类型中直通接头与绝缘接头的基本构成相同,此类接头使用广泛,就高压范围看,充油电缆接头构造几乎已定型,而XLPE电缆随着应用不断扩展和技术进步,其接头选用问题则愈益受到关注。现将世界上66kV以上XLPE电缆直通接头的构造类型、特点及其主要应用概况列示于表2。从不完全的调查所知,除了表中序号3、5、6等项外,列示的其他类型接头在我国66~220kV系统均有不同程度的应用,实践历史最长不到30年,而近年来,采用预制式接头已是较普遍趋向。以往使用PJ、PMJ的工程实践中,有在竣工试验或运行不长时间发生绝缘击穿,但这些归属初期实践缺乏经验的因素,易于克服改观,无碍其继续有效应用(参见全国第六次电力电缆运行经验交流会论文集)。同属预制式的CSJ、SPJ,近年虽有较多选用趋向,从减免安装过程中绝缘件受污损,有利于增强绝缘可靠性,但其长期运行的界面压力将自然减小,就使用寿命期内未来是否确能保持所需绝缘特性而论,还不一定优于PJ。综合分析,表2所列各类型构造,除个别外,或许评断为时尚早,因而从—般性考虑按使用特征归纳出合理选择原则。虽然66~1lOkV电缆线路原有的TJ多在正常运行,且还将继续。但对于TJ的应用问题,要看到以往采用它是由于接头的构造类型有限,其选择条件不像如今的多样化;TJ的可靠性受人为因素影响较大,是其本质弱点;既然可靠性相对较高的构造类型已不乏供选择,国产PMJ等也已问世,而TJ的应用电压不可能进入220kV级,其发展空间有限,再开发国产绕包机等缺乏实际意义,因此,对于工程设计限制选用TJ,有其积极意义。但这显然不意味现已正常运行的TJ均需撤换,它也不应属于工程设计范畴。

表2 66kV及以上XLPE电缆接头构造类型和主要应用概况

注:1 ﹡详见1997年、2000年全国第五次、第六次电力电缆运行经验交流会论文集,《上海电力》1993,No.1。﹡﹡详见1992年全国第四次电力电缆运行经验会论文集。2 除注1所示外,其余详见《电气学会技术报告》第767号,2000,3。

或当电缆尾端接有大的电容时:

(2)

②尾侧终端接地、电缆首侧金属层开路端的冲击电压USB的表达式:

(3)

式中:E——雷电进行波幅值(kV);Zo——架空线波阻抗(Ω),一般为400~600Ω;Zc——电缆导体与金属层之间波阻抗(Ω);Zse——电缆金属层与大地之间波阻抗(Ω);R——金属层接地电阻(Ω)。Zc、Zse与电缆规格、型式和敷设方式有关,尤其后者影响差异较明显。理论计算值与实测值往往有较大差异,现从日本和国际大电网会议(CIGRE)文献中摘列部分 Zc、Zse值,列于表4。

表4 部分单芯电缆 Zc、Zse值

2)电缆直连GIS终端的绝缘筒,因断路器切合时产生操作过电压。具有约20MHz高频衰减振荡波和波头长0.1μs陡度的特征,该行波沿电缆导体浸入,在金属层感生暂态过电压的相关因素和等价电路,示于图l,可得到绝缘筒间过电压(Uab)、电缆金属层对地过电压(US)的表达式:

(4)

式巾 E1—— GIS的断路器切合过电压沿电缆导体进行波幅值(kV);Zch——气体绝缘母线的芯线与护层间波阻抗(Ω);Zcs——气体绝缘母线的护层与大地间波阻抗(Ω);L1、L2——气体绝缘母线和电缆的各自接地线感抗(Ω);C——两护层间的杂散电容(F);其余符号含意同上。以上算法虽不复杂,然而在工程设计中要确定准确的有关参数,一般较难办。

(a)连接形态                          (b)等价电路图1 电缆直连GIS终端绝缘筒的暂态过电压计算用等价电路

2 经由实际系统的测试结果评估。迄今所见,主要有日本报道过66kV及以上单芯电缆线路的系列实际测试,现摘列部分结果如下:1)对于66~275kV电缆未设置护层电压限制器情况,20世纪80年代起先后进行过10次以上测试,电缆线路金属层对地暂态过电压(US)分别达45.6kV、100~219kV、90~246kV(相应额定电压级为66kV、154kV、275kV),均已超出电缆外护层绝缘耐压水平。此外,系列66~154kV电缆具有多个交叉互联单元的长线路测试数据,显示了电缆线路首端(雷电波侵入侧;若线路另一侧直连架空线,则存在两侧首端)起始1~2个交叉互联单元的US才有超过耐压值情况,其后的US均在耐压水平以下。虽如此,但日本对275kV及以上电缆线路所有的绝缘接头,均仍设置护层电压限制器以策安全。2)66~275kV电缆直连GIS终端的绝缘简,在3种不同条件电缆线路的测试结果,Uab分别达44.9kV、52.4kV、104.4kV、186.6kV(相应额定电压级为66kV、77kV、154kV、275kV),均超出耐压值,若在绝缘筒并联0.03μF电容或护层电压限制器,则测得Uab不超过6~14kV,证实有效。[参见日本《电气学会技术报告》第366号(1991)、第527号(1994)等专题论述]。3 基于以上论述就本条文内容作如下解释。1)单芯电缆的外护层等3类部位,在运行中承受可能的暂态过电工,如雷电波或断路器操作、系统短路时所产生,若作用幅值超出这些部位的耐压指标时,就应附加护层电压限制器保护,是作为原则要求。2)因35kV以上电缆系统的US实测有超出耐压值情况,又考虑通常对具体工程难以确切判明,为安全计就一般而论,均需实施过电压保护。如果有工程经实测或确切计算认为无须采取,则属“一般”之外。3)35kV及以下单芯电缆以往多末装设护层电压限制器,经多年运行尚未反映有过电压问题;而实测US随额定电压由高至低有较大幅度变小的趋势,况且设置后若选用不当(如工频过电压的热损坏)也会带来弊病,故与35kV以上的对策宜有所区分。鉴于国内有的35kV电缆工程近年也设置护层电压限制器,利于安全的积极意义,需引起重视,现都综合反映于修改的条文中。4)原条文只规定单点接地方式下护层电压限制器的设置,对交叉互联情况未予规定,易产生误解,现予以补增。5)本条款l的第3)项也系补增。首先需指出,我国迄今使用电缆直连GIS终端为国外引进产品,国内有关标准尚无GIS终端的绝缘筒耐压指标,现基于上述第l款第2)项,并借鉴日本《地中送电规程》JEAC 6021-2000规定(如图2)拟定此对策。其次在用词上并末以“应”而取“宜”,是考虑到一旦若选用较高的耐压指标而确能耐受Uab时,保护措施或将免除。

图2 GIS终端绝缘筒及其接地和保护示意

图3 交叉互联线路设置护层电压限制器的三相连接方式

(7)

有并行回流线,回流线与电源中性线接地的地网未接通:

(8)

有并行回流线,回流线与电源中性线接地的地网连通:

式中 D——地中电流穿透深度;当f=50Hz时,D=93.18√ρ(m);ρ为土壤电阻率(Ω·m),通常为20~100;直埋取50~100;R——金属层单点接地处的接地电阻(Ω):Rp和R1、R2——回流线电阻(Ω/km)及其两瑞的接地电阻(Ω);Rg——大地的漏电电阻(Ω/km),Rg=π2×f×10-4=0.0493;rp、rS——回流线导体、电缆金属层的平均半径(m);s——回流线至相邻最近一相电缆的距离(m);Ik——短路电流(kA),ω=2πf,f为工作频率(Hz);l——电缆线路计算长成(km);当SVL设置于线路中央或者设置于两侧终端而在线路中间直接接地时,l为两则终端之间线路长度的一半。运用(7)~(9)式的一般结果显示:(7)式中R占相当份额,同一条件下有(8)比(7)式算值小,(9)比(8)式算值较小因而比(7)式算值更小。由此,本条款3和条款1的前一段,得以释明,后一段则指,系统短路时在回流线感生的暂态环流。按发热温升不致熔融导体是保持继续使用功能的最低要求。现以热稳定计是留有充分的安全裕度。需指出,当电缆并非直埋或排管敷设而是在隧道、沟道中,则金属支架接地的连接线就具有一定程度的回流线功能。注:上述算式可参见江日洪编《交联聚乙烯电力电缆线路》,1997;《Elactra》No.128,1990等。4.1.17 系原条文4.1.16保留条文。4.1.18 系原条文4.1.17修改条文。电缆的金属层是金属屏蔽层、金属套的总称。

THE END
0.广东省标准《建筑施工附着式升降脚手架安全技术规程》(征求意见稿)3基本规定 5 4构配件 7 4.1构配件的材质 7 4.2构配件制作要求 8 5荷载与设计计算 9 5.1荷载 9 5.2基本计算规定 10 5.3构件结构设计计算 12 5.4附着支承装置设计计算 16 5.5升降系统设计计算 19 6构造要求 21 6.1一般规定 21 6.2架体构架 22 6.3安全装置 23 jvzq<84yyy4489iqe0ipo8iqewsfp}4431663A4381?53<;;5a?89@:8;6=/uqyon
1.悬挑式外脚手架施工方法悬挑式外挑脚手架,它以构造简单,操作方便,减少钢管的投入量、节约人工费等优点,赢得了广大用户,且建筑物越高越经济。下面由小编为大家分享悬挑式外脚手架施工方法,欢迎大家阅读浏览。 一、特点 1、悬挑式脚手架是指架体结构卸荷在附着于建筑结构的刚性悬挑梁(架)上的脚手架,用于建筑施工中的主体或装修工程的作业jvzquC41yy}/qq6220ipo8ugkz{o1ƒnnkcuzwjs154968@3jvor
2.《施工脚手架通用规范》GB55023    3  悬挑脚手架、附着式升降脚手架应在全外侧立面上由底至顶连续设置。 4.4.8  悬挑脚手架立杆底部应与悬挑支承结构可靠连接;应在立杆底部设置纵向扫地杆,并应间断设置水平剪刀撑或水平斜撑杆。 4.4.9  附着式升降脚手架应符合下列规定: jvzq<84yyy4489iqe0ipo8hqpvkov8761363986317;4;@>52a725@<722=50|mvon
3.2022年上海市安全员C证考题及答案悬吊平台上应设有操纵用控制开关29、【单选题】附着式升降脚手架结构构造的尺寸应符合下列规定:直线布置的架体支承跨度不得大于7m,折线或曲线布置的架体,相邻两主框架支撑点处的架体外侧距离不得大于()m;( D ) A、5.1 B、5.2 C、5.3 D、5.4 30、【单选题】企业在安全生产许可证有效期内,严格遵守有关安全生产的法律法规,未发生死亡事故的jvzquC41dnuh0lxfp0tfv8~wvkgo:?;91cxuklqg1fkucrqu13856::273
4.DGJ081142005临时性建(构)筑物应用技术规程.pdf下载5.7.1临时性建筑物基础结构构造应符合下列规定, 1宜采用钢筋混凝土条形基础,埋深宜根据临时性建筑物的 层次和荷载面定,1层不宜小于300mm,2层不宜小于500mm,基 础垫层厚度不应小于75mm; 2宜设置地圈梁,地圈梁宽度不宜小于200mm,高度不应小 于120mm。纵向钢筋不应小于410,箍筋不应小于6,钢筋间距 不应大于300jvzq<84yyy4c|tt0eqs0u}i14797:?3jvor
5.2024年春江苏开放大学《建筑信息建模(BIM)技术应用060459》第一47.在 Revit 中,可以使用结构柱实现构造柱的放置 答案: 对 解析: 48.错 IM 技术是一种仅限于三维的模型信息集成技术,可以使各参与方在项目从概念产 生到完全拆除的整个生命周期内都能够在模型中操作信息和在信息中操作 答案: 错 解析: 49.可以使用公制常规模型创建独立基础族 答案: 对 解析: 50.Revit 中jvzquC41yy}/fm|m349/ew4ctenjxnx18692;B
6.2022流动式起重机司机考试练习题模拟考试平台操作46、【单选题】附着式升降脚手架结构构造的尺寸应符合下列规定:直线布置的架体支承跨度不得大于7m,折线或曲线布置的架体,相邻两主框架支撑点处的架体外侧距离不得大于()m;( D ) A、5.1 B、5.2 C、5.3 D、5.4 47、【多选题】如图所示,存在有哪些安全隐患()? jvzquC41dnuh0lxfp0tfv8n92:7;@5691gsvrhng1jfvjnnu1736@6;4;>