超弹电磁屏蔽气凝胶研究取得进展

——习近平总书记在致中国科学院建院70周年贺信中作出的“两加快一努力”重要指示要求

——中国科学院办院方针

院况简介

院领导集体

侯建国

吴朝晖

孙也刚

周 琪

汪克强

丁赤飚

何宏平

孙晓明

王 华

文 亚

王大同

机构设置

创新单元

科技奖励

科技期刊

科技专项

中国科学院院级科技专项体系包括战略性先导科技专项、重点部署科研专项、科技人才专项、科技合作专项、科技平台专项5类一级专项,实行分类定位、分级管理。

文化副刊

诗 歌

书 画

摄 影

散 文

中国科学院学部

中国科学院院部

语音播报

屏蔽电磁干扰对人类健康和电子设备可靠性具有重要影响。根据电磁屏蔽机理,电导率是决定电磁屏蔽效率的关键因素,因而传统的电磁屏蔽材料以导电金属为主。但金属存在材料密度大、价格高、易腐蚀、柔性差等问题,难以满足新一代电子设备的要求。聚合物/导电填料纳米复合材料具有密度低、柔性好、成本低等优点,且该材料还可以引入多孔结构,从而增加多重反射几率,进一步提升电磁屏蔽效能,具有良好的应用潜力。然而,聚合物基多孔电磁屏蔽材料面临两个挑战:一是如何解决电导率与孔隙率矛盾的问题;二是如何降低多孔形貌对复合材料力学性能,特别是对弹性的负面影响。

近期,中国科学院宁波材料技术与工程研究所研究员阎敬灵和副研究员陈海明团队提出了多级形貌调控新策略。该策略以聚酰胺酸盐与碳纳米管的水性分散液为前驱体,通过精准调控碳纳米管含量与前驱体浓度以及各向异性冷冻干燥技术,制备出具有仿生多级结构的聚酰亚胺/碳纳米管复合气凝胶。

研究表明,聚酰胺酸盐溶液中引入高含量碳纳米管可增加体系粘度,有效抑制冰晶生长,并在升华过程中产生局部爆破力,从而形成类似牛肚的褶皱结构。研究人员采用该方法制备的聚酰亚胺/碳纳米管气凝胶具有独特的宏观中心辐射+微观类牛肚褶皱多级结构,从而表现出优异的抗压性能和压缩负膨胀行为。研究显示,在经历500次压缩循环后,结构稳定性仍保持在98.2%以上,且良好的分散性有效促进了聚酰亚胺基体中碳纳米管纳米桥的连接,使复合气凝胶在高孔隙率时表现出良好的电导率。研究人员进一步结合多级孔结构可显著增强电磁波的反射特性,在室温下实现高达71dB的电磁屏蔽效能,且在350 ℃高温下仍能具有相当甚至稍高的电磁屏蔽效能。

该系列气凝胶具有独特的仿生结构、优异的机械强度以及负泊松比,可用于高温苛刻环境下的电磁屏蔽。同时,该研究为耐高温气凝胶材料的结构设计提供了新思路。

相关研究成果以Bioinspired Polyimide/Carbon Nanotube Aerogels with Core-Radiating and Omasum-like Morphology toward Excellent Electromagnetic Shielding and Superior Elasticity为题,发表在《先进材料》(Advanced Materials)上。研究得到国家资助博士后研究人员计划、浙江省自然科学基金等的支持。

聚酰亚胺/碳纳米管气凝胶的结构设计与性能:(a) 聚酰亚胺的合成路线;(b) 牛肚微观形貌示意图;(c) 多孔电磁屏蔽材料常规孔道形貌和本工作中提出的类牛肚状形貌的对比;(d)聚酰亚胺/CNT气凝胶制备过程;(e) 气凝胶的负泊松比;(f) 气凝胶的循环压缩性能;(g) 气凝胶的高温电磁屏蔽性能。

THE END
0.侯鸿浩/邱小忠团队开发基于褶皱微结构化水凝胶的心肌梗死传感检测针对上述难题,该团队开发了一种基于仿生褶皱微结构与纳米粘土片层互锁增强自适应的离子导电水凝胶柔性应变传感器。该种新型微纳米增强水凝胶具有高度可拉伸性和延展性,可以拉伸将近1000%而不断裂,并能承受高达5000次以上的力学拉伸/压缩循环。该离子导电水凝胶被设计成具有表面褶皱微结构和内部高度有序排布纳米结构的多级jvzq<84rqtzbn7xow0kew7hp1lizz‚4kphu0399415<987mvo
1.国家研究中心熊伟教授团队提出超快激光3D打印多维纳米褶皱结构通过调控界面应力失配程度,研究团队实现了多维纳米褶皱结构的可控按需制造和对褶皱特征形态的精确控制,其典型的褶皱结构波长为40 nm。进一步,通过引入结构应力失配,研究团队实现了纳米褶皱结构对材料表面力学性质的微观反常调控,以及褶皱晶格结构体从表面起皱到结构形变转换的仿生动态调节。该研究提出并实现了一种可制备任意jvzq<84pgyy/j~xv0gjv0ls1kplp1:5251:6:A;0jvs
2.青蛙手机壳折叠设计背后的仿生学原理p 在自然界中 青蛙的皮肤褶皱结构能有效缓冲外力冲击 这种生物特性被广泛应用于材料科学领域 科学家发现 褶皱表面可分散压力 提升抗压性能 这正是 仿生学 的典型应用之一 如今 这项原理也被巧妙融入日常用品设计中 比如专为华为Mate系列打造的青蛙造型手机壳jvzquC41lkgoiqz0vcuccx3eqo5hwjsinqibn89994?`fA=h25g76;9g5f85;:g::h8:6?jh2e84
3.校区青年教师程子明研究成果获国际仿生创新奖受人体皮肤褶皱增强人体自身辐射力的启发,研究团队围绕光谱调控实现高效辐射制冷的研究思路,进而提出仿生皮肤自然褶皱结构结合优化粒子实现太阳光谱和大气窗口双波段优化的设计方案,有效提高涂层的光谱性能(太阳波段反射率~95%,大气窗口波段发射率~96%),实现正午时段最高低于环境温度8.1℃的降温效果。相关专利经技术转让已实现规模化生 jvzquC41vqjb{7mkvyn/gmz0ep532;7134681l6245g28<8;71vbin3jvo
4.共聚焦显微技术生活中的仿生学微信文章基于此,科学家们利用类似鲨鱼皮的结构研发出了Sharklet抗菌防污技术。通过模仿鲨鱼皮表面的褶皱结构等,Sharklet结构能够实现抑制细菌生长,减少细菌附着等效果。借助于蔡司激光共聚焦显微镜LSM 900MAT(查看更多),可以清晰的看到Sharklet结构的三维形貌,同时对于结构的宽度与高度也可轻松的进行表征。 jvzquC41kdupm7fpvrkekj3eqo5y1B>669
5.多级褶皱结构表面的仿生制备及其防污性能研究多级褶皱结构表面的仿生制备及其防污性能研究,污损生物,防污,仿生构筑,超疏水,玫瑰花雌蕊柱头,生物污损普遍存在于海洋、工业等各个领域中,危害严重。通过防污剂释放的防污手段在很大程度上减少了污损生物的附着,但其造成的生jvzquC41ycv/ewpk0pku1}twej5xgk4Fkuyft}fvkqt0C{ykenk039::;/714:;495750wm0jvsm
6.基于蜻蜓翅膀仿生的褶皱肋环型薄壳结构研究结构仿生作为建筑仿生的重要分支,它是将自然界经亿万年进化而来的优化生物体内部结构特性应用于建筑结构设计中的前沿学科。目前,国内外对蜻蜓翅膀的研究表明,蜻蜓翅膀的褶皱截面能大幅度增强蜻蜓翅膀刚度,翅膜与翅脉共同工作,使蜻蜓翅膀更有效承受飞行过程中所受的 jvzquC41ycv/ewpk0pku1}twej5xgk4Fkuyft}fvkqt0C{ykenk0/:5342746:60jvsm
7.综述:聚合物表面创新性褶皱制备技术:光学与防伪应用指纹仿生:复现生物指纹的独特性,提升防伪标签安全性。 Conclusion 褶皱技术为微纳结构制备提供了高效、低成本的解决方案,但其随机缺陷和形貌单一性仍是挑战。未来通过多场耦合调控(如光-力-电协同)和机器学习辅助设计,有望推动褶皱材料在柔性电子(flexible electronics)和生物传感等领域的突破。 作者团队 第一作者邓崇锋(DjvzquC41yy}/gknqvtgeg7hqo1tfy|k14286/?4424;18;=457?4:A920jzn
8.天津大学材料学院封伟教授团队AdvancedMaterials综述:当仿生设计红外隐身材料则聚焦动态发射率调控,模仿头足类动物色素囊收缩机制,利用柔性微腔、褶皱表面等仿生结构,通过电/热/机械刺激实时改变表面形貌,实现红外辐射特征与背景的动态匹配,响应时间缩短至毫秒级。两类材料均需解决宽谱段协同调控难题,需结合多层结构、多物理场耦合机制实现全光谱管理。未来发展方向包括提升材料在极端jvzq<84oug4ul~3gfw4dp8nphq523<7168670qyo
9.波浪褶皱设计为何适合OPPO手机防护?在工业设计领域,波浪褶皱结构常被用于提升材料的抗冲击性与空气流动性 。这种源自仿生学的设计灵感,来源于自然界中贝壳、蜂巢等具有高强度支撑特性的形态,通过凹凸起伏的结构分散外力,增强整体韧性 。如今这一原理也被巧妙应用于手机配件中,尤其是针对日常频繁使用的手机壳,提供更科学的缓冲保护。 jvzquC41lkgoiqz0vcuccx3eqo5hwjsinqibn89994?`d=h:237bgj:98glc4?9925h42>655g?d
10.服装仿生褶皱设计及应用研究艺术性、创意性与工艺性的设计原则,其设计方法有创意思维法、量化分析法与多元兼容法;功能性仿生褶皱在服装设计中有内部结构性和外部廓形性仿生褶皱两种应用方式;装饰性仿生褶皱的设计表现分为点饰型、立体线饰型和面饰型仿生褶皱,其应用方式可与服装造型相结合、与服装面料相结合、与服装工艺相结合以及与其他方式相jvzquC41efse0lsmk0ipo7hp1Cxuklqg1EJNF6624;;.397397<12A3jvo
11.石雾遥:辣椒表面的褶皱也能用科学来解释!结果表明生长在水面上的荷叶通常会出现弯曲的锥形,且会在荷叶的外周边缘处长出长波的褶皱。而对于漂浮的荷叶,外周边缘则会有短波的褶皱。研究结果可为仿生结构形貌的调控提供新的思路。 荷叶 (图片来源:Veer图库) 可见,不少的生物的发展规律都可以用科学来解释,并会为新事物的发展提供新奇的思路。你还发现哪些有趣jvzq<84yyy4lgyz0pgz/ew4mrsll8fnn1814<44249158y424915;5a3873;B3jvor
12.泛亚视野城市里的建筑“仿生学”骨感复杂的几何图形,对称的结构,像是外星神秘基地,或是科幻片里才会出现的场景。 ▲建筑大楼模型构造复杂,似骨架一样利落的造型 ▲建筑立面图 // 迷人的建筑纹理 走进建筑的局部,你会看到振翅的“雄鹰”,身上仿佛真的有黑褐色的羽衣。 鹰的“爪子”上,还有皮肤一样的“褶皱”。 jvzquC41yy}/f6ftvu4dp8ftvkimg8ftvkimghnphq5lg‚4OVK}N|V~QFK;OF`I|7vutL‚pey0nuou
13.服装仿生褶皱工艺方法.pdf一~一一~一~岫一一一一一一一~一一.一一~一一一一一一~.~一一~~~一一.一一~一一.一一一~.~一一.~一芬弧一一~㈨一一~删一啦㈨一呻一鼬批一~叫一一一胁~删岫~一~一麓♂短骺服装仿生褶皱工艺方法雩岫.耋蒯岫薹恸鼬.薹溅删№一一丰渡一山崃引‰崦出劬。出李暖暖,吴志明。严疵.一斜相jvzquC41o0zbqmteu0ipo8u/79=:9@7380nuou
14.分子/细观统计力学行为团队在流体仿生智能操控研究方面取得进展本研究将介电弹性体与润滑剂浸入的光滑表面相结合,通过设计圆环状电极,在电场的作用下形成放射状褶皱结构,且对电极形状、电极大小、预拉伸以及电极材料等影响因素进行探究。褶皱几何形状和润滑剂厚度可以通过电场动态调节,通过编程径向褶皱和润滑剂厚度来控制液滴的运动轨迹和速度,来实现不同体积液滴的定向传输和分选。jvzq<84yyy4mpv3kogii0lfu0et0m‚iv14637:61v4637:636a=:9=590jznn