有限元数值模拟龙门山断裂带地震循环的地壳变形演化

有限元数值模拟龙门山断裂带地震循环的地壳变形演化

中国科学院计算地球动力学重点实验室, 中国科学院大学地球与行星科学学院, 北京 100049

国家自然科学基金(41574085,41590865)资助

中图分类号:P315;P541

Key Laboratory of Computational Geodynamics of Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

现今地壳变形数据显示横跨龙门山断裂带的地壳缩短速率低于3 mm·a-1,如此小的地壳缩短速率与龙门山断裂带附近的长期地质造山(平均高程约4.5 km)形成强烈对比.我们构建并使用了一个二维平面应变黏弹塑性有限元模型来模拟龙门山断裂带的地震循环位移变化,从而探讨了短期变形与长期变形之间的关系.模型模拟了地震循环的各个阶段(震间加载期、同震瞬间和震后黏性松弛调整期)以及多个地震循环(万年尺度)的地表变形,揭示了变形在地震循环中是如何累积、释放、调整以及最终形成永久变形导致了造山.模拟结果显示,岩石圈流变结构以及断层几何形态均对地震循环的地表位移变化有着显著的影响.经过多个地震循环,青藏高原东缘整体产生水平缩短与增厚抬升,而四川盆地基本保持稳定,区域的水平缩短主要由断层位错及青藏东缘的缩短抬升来调解,造成了青藏东部与川西盆地的差异抬升.研究结果将地震循环时间尺度的短期变形与长期地质造山联系起来,帮助我们理解青藏高原东部的隆升机制.

The present-day crustal deformation data show the shortening rate is less than 3 mm·a-1 across the Longmen Shan fault zone. Such a small shortening rate is a sharp contrast to the long-term orogeny with topographic relief of about 4.5 km. To address this issue, this work constructs a series of 2-D plane strain visco-elastic-plastic finite element models to explore the relationship between short-term and long-term deformation. We simulate the surface displacement of different stages (inter-seismic, co-seismic and post-seismic) in one seismic cycle, and the total displacement of multiple seismic cycles. The results show that permanent deformation leading to orogeny is generated after a seismic cycle. The rheological contrasts in the lithosphere and fault geometry have a significant effect on surface displacement distribution. After multiple seismic cycles, the eastern Tibetan plateau experiences overall uplift and shortening, while the Sichuan basin remains relatively stable. The shortening of the entire region is mainly accommodated by fault slip along the Longmen Shan fold-and-thrust zone, resulting in differential uplift between the eastern Tibetan plateau and the western Sichuan basin. Our model links the short-term deformation of multiple seismic cycles with long-term geologic orogeny, which helps the understanding of the uplift mechanism of the eastern Tibetan plateau.

图 1青藏高原东部区域地形图

青藏高原东部区域地形图

Figure 1.Topographic map of eastern Tibetan plateau

Topographic map of eastern Tibetan plateau

图 2二维黏弹塑性有限元模型; TP代表青藏高原东缘,SB代表四川盆地

二维黏弹塑性有限元模型; TP代表青藏高原东缘,SB代表四川盆地

Figure 2.Two-dimensional visco-elastic-plastic finite element model. TP represents eastern Tibetan plateau. SB represents Sichuan basin

Two-dimensional visco-elastic-plastic finite element model. TP represents eastern Tibetan plateau. SB represents Sichuan basin

图 4断层上盘深度为11.2 km处节点上的应力随时间变化曲线上图是下图矩形框区域的放大, 本文压应力为正.

Figure 4.Stress-time curve of a node on fault at depth of 11.2 km Upper is the magnification of the rectangular box in lower. Compressive stress is positive.

Stress-time curve of a node on fault at depth of 11.2 km Upper is the magnification of the rectangular box in lower. Compressive stress is positive.

图 5一个地震循环的地表位移

一个地震循环的地表位移

Figure 5.Surface displacement of one seismic cycle

Surface displacement of one seismic cycle

图 6多个地震循环后的地表总位移

多个地震循环后的地表总位移

Figure 6.Total surface displacement after multiple seismic cycles

Total surface displacement after multiple seismic cycles

图 7震间地表变形速率对比

震间地表变形速率对比

Figure 7.Velocity contrast between different models at inter-seismic stage

Velocity contrast between different models at inter-seismic stage

图 8同震地表位移对比

同震地表位移对比

Figure 8.Displacement contrast between different models at co-seismic stage

Displacement contrast between different models at co-seismic stage

图 9震后5年地表平均变形速率对比

震后5年地表平均变形速率对比

Figure 9.Average velocity contrast between different models for first 5 years after an earthquake at post-seismic stage

Average velocity contrast between different models for first 5 years after an earthquake at post-seismic stage

图 10计算同震位移矢量图

计算同震位移矢量图

Figure 10.Computed co-seismic slip vectors

Computed co-seismic slip vectors

图 11不同断层几何形态的同震地表位移对比

不同断层几何形态的同震地表位移对比

Figure 11.Co-seismic displacement contrast between different models which have different fault geometries

Co-seismic displacement contrast between different models which have different fault geometries

图 12模拟地表变形和地表观测数据的对比

模拟地表变形和地表观测数据的对比

Figure 12.Contrast between modeling results and observation data

Contrast between modeling results and observation data

图 13龙门山断裂带的一个地震循环地表总位移

龙门山断裂带的一个地震循环地表总位移

Figure 13.Total surface displacement of one seismic circle in Longmen Shan fault zone

Total surface displacement of one seismic circle in Longmen Shan fault zone

表 1参考模型岩石圈各地层物质参数设置

参考模型岩石圈各地层物质参数设置

Table 1.Material parameter of the reference model

Material parameter of the reference model

表 2黏度η及断层角度φ设置

黏度η及断层角度φ设置

Table 2.Angle φ and viscosity η settings

Angle φ and viscosity η settings

Deng Q D, Chen S F, Zhao X L. 1994. Tectonics, seismicity and dynamics of Longmen Shan mountains and its adjacent regions. Seismology and Geology (in Chinese), 16(4):389-404.

Guo B, Liu Q Y, Chen J H, et al. 2009. Teleseismic P-wave tomography of the crust and upper mantle in Longmenshan area, west Sichuan. Chinese Journal of Geophysics (in Chinese), 52(2):346-355.

Hu S B, He L J, Wang J Y. 2001. Compilation of heat flow data in the China continental area (3rd Edition). Chinese Journal of Geophysics (in Chinese), 44(5):611-626.

Huang J L, Zhao D P, Zheng S H. 2007. Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. Journal of Geophysical Research:Solid Earth, 107(B10):ESE 13-1-ESE 13-14.

Jaeger J C, Cook N G W, Zimmerman R W. 2007. Fundamentals of Rock Mechanics. 4th ed. Malden, Massachusetts:Blackwell Publishing, 475.

Jia D, Chen Z X, Jia C Z, et al. 2003. Structural features of the Longmen Shan fold and thrust belt and development of the western Sichuan Foreland Basin, Central China. Geological Journal of China Universities (in Chinese), 2003, 9(3):402-410.

Jia Q P, Jia D, Zhu A L, et al. 2007. Active tectonics in the Longmen thrust belt to the eastern Qinghai-Tibetan plateau and Sichuan Basin:evidence from topography and seismicity. Chinese Journal of Geology (in Chinese), 42(1):31-44.

Khan A S, Huang S. 1995. Continuum Theory of Plasticity. New York:John Wiley & Sons Inc., 440.

Li H B, Si J L, Pan J W, et al. 2008. Deformation feature of active fault and recurrence intervals estimation of large earthquake. Geological Bulletin of China (in Chinese), 27(12):1968-1991.

Li Y, Zhou R J, Densmore A L, et al. 2006. Geomorphic evidence for the late Cenozoic strike-slipping and thrusting in Longmen Mountain at the eastern margin of the Tibetan Plateau. Quaternary Sciences (in Chinese), 26(1):40-51.

Liu Q Y, Li Y, Chen J H, et al. 2009. Wenchuan MS8.0 earthquake:preliminary study of the S-wave velocity structure of the crust and upper mantle. Chinese Journal of Geophysics (in Chinese), 52(2):309-319.

Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4):1135-1154.

Pande G N. 1990. Numerical Methods in Rock Mechanics. West Sussex, England:John Wiley & Sons Inc., 327.

Sun C. 1989. Geodetic deformation measurement and space technology. Advances in Earth Sciences (in Chinese), 4(2):4-8.

Tucker G E, Lancaster S T, Gasparini N M, et al. 2001. The channel-hillslope integrated landscape development model (CHILD).//Harmon R S, Doe W W, eds. Landscape Erosion and Evolution Modeling. Boston, MA:Springer, 349-388.

Wang H, Li H B, Si J L, et al. 2013. The relationship between the internal structure of the Wenchuan earthquake fault zone and the uplift of the Longmenshan. Acta Petrologica Sinica (in Chinese), 29(6):2048-2060.

Wang Y X, Mooney W D, Han G H, et al. 2005. Crustal P-wave velocity structure from Altyn Tagh to Longmen mountains along the Taiwan-Altay geoscience transect. Chinese Journal of Geophysics (in Chinese), 48(1):98-106.

Xu C, Xu X W. 2012. The correlation of the Wenchuan earthquake triggered landslide erosion and co-seismic crustal uplift.//The 28th Annual Meeting of the Chinese Society of Geophysics (in Chinese), Beijing, China. 2.

Yin A, Nie S. 1996. A Phanerozoic palinspastic reconstruction of China and its neighboring regions.//Yin A, Harrison M, eds. The Tectonic Evolution of Asia. New York:Cambridge University Press, 442-485.

Zienkiewicz O C, Taylor R L. 2005. The Finite Element Method for Solid and Structural Mechanics. 6th ed. Burlington, Massachusetts:Butterworth-Heinemann, 631.

许冲, 徐锡伟. 2012. 汶川地震滑坡剥蚀量与地壳抬升量的关系. //中国地球物理学会第二十八届年会.

许才军, 汪建军, 温扬茂. 2009.震后松弛过程的粘弹性模型在1997年MW7.6玛尼地震中的应用研究.武汉大学学报(信息科学版), 34(3):253-256.

图(13)

表(2)

返回顶部

Topographic map of eastern Tibetan plateau

Two-dimensional visco-elastic-plastic finite element model. TP represents eastern Tibetan plateau. SB represents Sichuan basin

Stress-time curve of a node on fault at depth of 11.2 km Upper is the magnification of the rectangular box in lower. Compressive stress is positive.

Surface displacement of one seismic cycle

Total surface displacement after multiple seismic cycles

Velocity contrast between different models at inter-seismic stage

Displacement contrast between different models at co-seismic stage

Average velocity contrast between different models for first 5 years after an earthquake at post-seismic stage

Computed co-seismic slip vectors

Co-seismic displacement contrast between different models which have different fault geometries

Contrast between modeling results and observation data

Total surface displacement of one seismic circle in Longmen Shan fault zone

THE END
0.国家知识仓储利用模拟长周期地震动的显式有限元技术和并行计算技术、场地一维线性反演和等效线性化方法以及有限断层模型,针对一个具体的城市地下结构模型,本文给出了一套近断层地震动预测的方法和相应的预测结果,并与近断层地震动的特征对比,分析了预测结果的合理性. 关键词近断层地震动 / 预测/ 并行计算 Key wordsnear-fault jvzquC41rwhot7scruzje7hp1rkskxikecrBt}neng5139i|ieheƒi422>18958
1.工程力学采用数值模拟方法研究不同边坡坡度的路堤的流场特性,分析路堤积雪分布,在此基础上,在路堤迎风侧设置防雪栅研究不同层数防雪栅对路堤的挡雪 【更多】 岩体多裂纹扩展演化过程数值流形方法研究 韩智铭, 刘庆宽, 王雪, 谭超, 高一帆 岩体中含有大量节理、裂隙、断层等各类结构面,结构面在应力作用下的扩展与jvzquC41rwht0lxvco4ptp3ep1kn1
2.多场岩土空间文献导读:[研究目的]研究旨在通过数值模拟方法研究地震后降雨条件下非饱和边坡的渗流和变形特征,以揭示边坡失稳机制并提高灾害预防能力。[研究方法]研究使用有限元方法进行模拟,考虑了震后地震塑性模量的应变依赖性和震后渗透性的体积应变依赖性,建立了综合的水力-力学耦合分析模型。[研究内容]文章首先介绍了地震和降雨对边坡稳定性影响的jvzquC41fwudjjsi{ctuw7hqo1oofn}0rjv@oFftvkimg/f?fgzbkux(eqtugwyakfC72
3.离散元数值模拟软件zdem开发者2. 龙门山褶皱冲断带新生代构造变形; 3. 新生代构造变形模拟的研究进展。 报告中的数值模拟采用ZDEM完成,模拟结果很好的解释了龙门山新生代前陆冲断带构造应变的差异性分布。实验设计及边界条件控制值得学习。 视频详细介绍 盆地构造解析和构造模拟 2020年05月 jvzquC41iguwdx}0eqs0
4.跨断层埋地连续管道最佳管线为探究大管径埋地连续管道在断层错动下的最佳管线与断层交角,以Q235C连续钢管为例,采用ABAQUS有限元分析软件对跨断层大管径埋地连续管道进行了数值模拟,基于管道应变失效准则分析了管线与断层交角对断层作用下埋地管道轴向最大应变及失效区域长度的影响作用,探究了不同断层类型及不同管道埋深下埋地连续管道的最佳管线与断层jvzq<84kttohc}j0yj{/gmz0ep5DP8^42480X94K91758
5.强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则(2)大规模、高性能非线性有限元分析软件系统研发。集成大坝–河谷/地基–库水体系非线性动力耦合分析方法、考虑尺寸效应的堆石料静动力弹塑性本构模型、混凝土防渗体塑性损伤和开裂分析方法,研发大规模、高性能非线性有限元分析软件系统,实现强震作用下特高土石坝损伤演化、渐进破坏全过程模拟。基于GPU并行加速技术和多核jvzquC41yy}/epjlqwxocu3eqo5dp8ftvkimg8^42480K@4354?
6.HuangHanyuHomeKey Words:川南地区;长宁背斜;断层转折褶皱;有限元数值模拟;力学条件 Abstract:长宁背斜是四川盆地川南低缓褶皱带内重要的页岩气富集构造,其形成机制对于理解区域构造变形规律与指导油气勘探具有重要意义。本文基于高分辨率三维地震资料、钻井数据及前人建立的构造—演化模型,利用ABAQUS有限元数值模拟软件,建立了长宁背斜的地jvzquC41hcivn}~0ef{u0niw0et0JQ^345:0gw4nyem04B;:935dqwygpv5:7<850jzn
7.大学生认识实习报告(2)堆龙德庆平卧褶皱实习基地(3)羊八井高岭土矿实习基地3、实习目的:(1)理解基本的地质构造结构(2)此次实习更加深了我对地质学的了解和对学习地质学的兴趣,也更深刻理解到了学习地质的意义,巩固了学习大坝分为重力坝和拱坝,重力坝特征是体积大,分析其力时应用于材料力学、弹性力学、塑性力学、有限元法。jvzq<84yyy4vpsx0eqs0hjsygp5Hqwl|wqhbqpfq1unjzrgcqigp1ptpi|{pdjticqe25B7380nuou
8.飞机蒙皮范文8篇(全文)如图2所示, 取200mm×200mm长正方形区域模拟蒙皮区域, 有限元中建为三维体元, 厚度为1.1mm。椭圆凹槽采用长轴半径为37.5mm, 短轴半径为25mm, 沿长轴旋转而成的椭球与平板相交成长短轴比为1.5比1的椭圆形凹槽, 该凹槽深度分别为0.11mm, 0.14mm, 0.17mm, 模拟损伤的最大深度, 在蒙皮表面凹槽为椭圆形, 且蒙皮表面损伤 jvzquC41yy}/;B}wgunv0lto1y5jmn~6guhwc‚x0jvsm
9.多场岩土空间[研究方法]采用结合有限元和离散元法(FDEM)的方法,开发了一种新的计算几何方法,称为CWSVM,用于控制网格数量和质量。使用基于符号距离场的离散元法(SDF-DEM),模拟异质地质材料中不规则夹杂物的分布和取向。[研究内容]文章首先介绍了研究背景,重点分析了深圳滑坡的灾害情况及其对地质工程的影响。详细描述了FDEM的基本jvzquC41fwudjjsi{ctuw7hqo1oofn}0rjv@oFftvkimg/f?fgzbkux(eqtugwyakfC84