深度解析自由度及冗余约束问题

虚拟样机分析软件ADAMS(Automatic Dynamic Analysis of Mechanical Systems),是对机械系统的运动学与动力学进行仿真计算的商用软件,目前己经被全世界各行各业的数百家主要制造商采用。一个系统通常是由多个构建组成的,各个构件之间的这种约束通常存在某些约束关系,即一个构件限制另一个构件的运动,两个构件之间的这种约束关系,通常称为运动副或者铰链,ADAMS中运动副分为低副、高副和基本副[1] [2],这些运动副对构件的自由度进行约束,ADAMS为每个约束列出一个或多个代数约束方程,在实际中,存在着大量的机构由于人为的带入虚约束而导致过约束的情况[3],有时需要通过引入虚约束来增加系统的刚度[4],在定义运动副过程中,往往会出现过约束及冗余约束的情况,文献[5]分析了过约束问题,文献[6]对凸轮机构的冗余情况进行了分析,用一个点线副和一个平行副的组合来代替滑移副来解决冗余约束,但是没有分析具体方法。

并联机构具有高精度、高刚度、承载能力大和运动反解简单等特点, 成为机器人学者的研究热点[7] ,自由度小于6 的少自由度并联机构, 因其驱动部件少、结构简单、控制成本低等特点, 一直是国际学术界关注的热点和研究的前沿[8-14],交叉型平面二自由度并联机构属于少自由并联机构家族中的一种。本文对运用基本运动副代替低副约束刚体的自由度,同时不出现冗余约束,进行了详细的分析,总结了避免出现冗余约束的技巧,最后以交叉型平面二自由度并联机械手为对象,运用上述方法和技巧,详细介绍了在ADAMS中建立其运动学和动力学仿真模型的具体方法和步骤,为样机开发和实时控制系统的研究提供重要的参考。

2 运用基本运动副约束物体自由度

2.1 运动副的约束关系

一个构件在空间中具有6个自由度,即3个转动自由度和3个移动自由度。不同运动副,限制构件自由度的个数不同,转动副限制构件的5个自由度,只有1个绕转轴转动的自由度

2.2 基本运动副构建圆柱副

对于如图1的长方体,MARKER_1为固结于大地,位置和姿态与原点一致的点,MARKER_2为控制长方体位置和方向的点,姿态和位置与MARKER_1一致, 其在空间中有6个自由度,要实现长方体具有绕X轴转动和沿X轴移动两个自由度,即圆柱副,使其绕Y轴转动、沿Y轴移动、绕Z轴转动以及沿Z轴移动将被限制,主要有以下几个步骤:

1) 添加垂直副约束,限制长方体绕 轴转动,在垂直轴选项中选择2 Bodies-2 Location,实体分别选取长方体和大地,位置分别选取长方体上的Marker_2和大地上的Marker_1,方向选取Marker_1的X轴和Y轴,生成的Marker_3和Marker_4的Z轴与Marker_1的X轴和Y轴一致,如图2,要保证Marker_3与Marker_4的Z轴垂直,长方体绕Marker_1的Z轴的转动将被限制,其只有五个自由度,即绕Marker_1的X、Y轴的转动,和沿Marker_1的X、Y、Z轴的移动.

2) 添加点线副来限制长方体沿Y和Z轴两个移动自由度,在点线副选项中选择2 Bodies-1 Location,实体分别选取长方体和和大地,位置选取长方体上的Marker_1,方向选择X轴,生成的Marker_5和Marker_6的Z轴与Marker_1 X轴一致,如图3,考虑到1)中垂直轴副约束,长方体只有沿Marker_1的X轴的移动,和绕Marker_1的X、Y轴的转动三个自由度.

3) 添加垂直轴副来限制长方体绕Marker_1 Y轴的转动,选择2 Bodies-2 Location,实体分别选取长方体和大地,位置分别选取长方体上的Marker_2和大地上的Marker_1,方向选取Marker_1的X轴和Z轴,生成Marker_7和Marker_8的Z轴与Marker_1的X轴和Z轴一致,如图4,要保证Marker_7与Marker_8的Z轴垂直,长方体绕Marker_1 Y轴的转动将被限制,考虑到步骤1)、2),长方体剩下两个自由度,即沿Marker_1 X轴的移动和绕Marker_1 X轴的转动,通过在ADAMS中定义General Motion, 选择2 Bodies-1 Location,实体分别选取长方体和大地,位置选取大地上Marker_1,方向选取Marker_1的Z轴,如图5, 通过仿真测得绕X轴转动角度和沿X轴移动位移的曲线如图6、7 ,表明自由度的个数和方向是正确的.

2.3 基本副创建移动副和转动副

1) 移动副

添加垂直副限制其绕X轴转动,长方体只能沿Marker_1的X轴移动,选择2 Bodies-2 Location,实体分别选取长方体和大地,位置分别选取长方体上的Marker_2和大地上的Marker_1,方向选取Marker_1的Y和Z轴,生成的Marker_9和Marker_10的Z轴与Marker_1的Y轴和Z轴一致,如图8,要保证Marker_9与Marker_10的Z轴垂直,长方体绕Marker_1 X轴的转动将被限制,长方体只一个自由度,即沿Marker_1 X轴的移动,通过在ADAMS中定义General Motion仿真验证可知,自由度的个数和方向是正确的.

2) 转动副

添加点面副来限制其沿X轴移动,使长方体只能绕Marker_1 X轴转动,选择2 Bodies-1 Location,实体分别选取长方体和大地,选取大地上的Marker_1,方向选取Marker_1的X轴,生成的Marker_9和Marker_10的Z轴与Marker_1的X轴一致,如图9,长方体绕Marker_1的X轴的移动将被限制,其只剩下了一个自由度,即绕Marker_1 X轴的转动,通过在ADAMS中定义General Motion仿真验证可知,自由度的个数和方向是正确的.

THE END
0.第十八届“振兴杯”全国青年职业技能大赛448.不完全定位限制自由度的数目()。 A.六个B.小于六个C.大于六个D.零 449.现有这样一种定位方式,前端用三爪卡盘夹持部分较长,后端用顶尖顶入中心孔这种定位方式()。 A.不存在过定位B.是完全定位C.存在过定位D.不能肯定是什么定位方式 450.通过夹紧装置的作用,我们可以使工件()。 A.待加工位置发生改变jvzquC41yy}/ys}0ep5y|879;;>8;9:0cuvy
1.工件加工时的定位与基准直角坐标系中约束自由度的情况来分析。一个物体在空中间可以有六个独立的运动。它在直角坐标系可以有3个平移运动和3个转动。 如果要确定刚体在直角坐标系中的位置,需对其自由度进行约束。即对进行 约束。二、定位原理在端面布置一个约束点6,则限制刚体的自由度:在侧面布置两个约束点4、5,则 jvzq<84yyy4489iqe0ipo8iqewsfp}4421734?4341=42B=2:6e:7<:79;:20|mvon
2.Box2D详解:2D物理引擎核心概念与API指南固定装置将形状绑定到身体,并增加了诸如密度,摩擦力和恢复性的材质属性。固定装置将一个形状放入碰撞系统(宽相)中,以便它可以与其他形状碰撞。 约束 约束是一种物理连接,它消除了物体的自由度。 2D物体具有3个自由度(两个平移坐标和一个旋转坐标)。如果我们将一个物体固定在墙上(如钟摆),则将其约束在墙壁上。此jvzquC41dnuh0lxfp0tfv8|gkzooa=95728178ftvkimg8igvcomu8633;>83B;