趣看丨如何学好高中物理

有些同学初中时很喜欢物理,觉得物理很简单也很有意思。但一到高中就感觉跟不上了,感觉跟自己以前认识的物理不是一个东西,不再那么直观,也不再那么简单有趣。

追根溯源,我们得问:为什么很多原本喜欢物理的人,一到高中就不喜欢物理了?仿佛一到高中,物理就变得又难又无趣,跟初中物理不是一个物种似的。

其实,物理一直都是很美并且很有趣的。

但是,高中物理和初中物理的确有点不一样。如果不能及时认识到这点,还一直用初中物理的思维学习高中物理,那肯定会各种不适应,觉得物理又难又无趣,那就不好玩了。

01

从定性到定量

高中物理和初中物理有一个非常大的不同:很多物理问题在初中只要你做定性的分析,到了高中就要你做定量的计算。

从定性分析到定量计算是一步非常大的跨越。

在初中,我们只需要定性地分析那些热学、光学、力学、电磁学的现象。

这种初见物理的朦胧美,一如初见的恋人。人生若只如初见,那谁都可以跟物理谈恋爱。

初中我们只要知道为什么苹果会往下落;高中就要能算出苹果1秒钟下落了多高,2秒后的速度是多少。

初中我们只要知道电荷同性相斥,异性相吸;高中我们就要知道两个电荷相距1米,它们的吸引力和排斥力到底有多大。

初中我们只要知道电荷在电场中会加速运动;高中我们就要算出电荷的运动的具体轨迹。

这样,大家明白从初中物理到高中物理到底发生什么了么?

是的,从恋人变成了夫妻。话题从以前的梦想环游世界,变成了计算每个月的花费有多少,计算年终奖发多少可以去国外旅游。

现在你知道为什么很多人初中喜欢物理,到了高中就突然不喜欢物理了吧?没错,跟有些人想一直谈恋爱不想结婚一个道理~

但是,物理学是研究一切物质的运动形式和规律的学科,我们当然不能只满足于对物理现象做一些定性分析。

如果我们可以算出每个物体的运动情况,对宇宙中所有物体的运动规律都了如指掌。这种开了上帝视角,这种宇宙万物尽在我心中的感觉,绝不是那种初见的朦胧感能比的。

如果你把物理图像都看清楚了,把物理框架建起来了,你会发现高中物理的定量计算其实一点也不难。

好,接下来,我们就回到物理学的起点,再重新认识一次物理。

02

为什么会运动?

宇宙万物都在运动和变化之中,物理学就是要研究它们的运动变化规律,研究它们为什么会运动,怎样运动?

我们能看见物体,是因为光子跑到眼睛里来了;我们能听见声音,是因为声波通过空气传入了耳朵;我们能接听电话,是因为有电磁波在给我们传递信息;至于苹果熟了会下落,推下椅子,椅子就会动就更不用说了。

如果没有运动,世界将是一片死寂,那也没物理学啥事了。

既然运动是如此的普遍和显然,那物体为什么会运动呢?

咋一看,这个问题好像很好笑,但仔细一想,你会发现它远没有想象的那么简单和理所当然。

比如你想,我推椅子,椅子就动了。这个好理解,通过接触传递力也很容易接受。

但是,苹果下落时,并没有东西跟它接触啊,为什么它还会运动呢?热气球上升时,也没有东西跟它接触,为什么它也跟着运动?

而且,为什么苹果往下运动,热气球却往上运动呢?难道说重物都往下落,轻物都往天上飞?

这里,肯定有些同学想说:苹果下落是因为受到了向下的引力,热气球上浮是因为受到了向上的浮力。

很多家长在回答孩子的问题时,也喜欢直接这样甩答案。这答案虽然没错,但它过于从天而降。孩子们通过这种答案只能获得一个零碎的知识点,无法了解背后的知识体系,也无法体会科学是如何建立起来的。

古希腊人对自然界进行了细致地分析和深入的哲学思考,最后形成了一套自洽的自然哲学体系。

地球上的物质由水、火、土、气四种基本元素组成。土元素天然会向宇宙中心运动(所以石头会掉下来),水元素也天然向宇宙中心运动,但这一趋势比土元素弱(所以水也会往下运动,但在土的上面),气元素天然向水和土以上运动(所以水里的气泡会往上面冒),火元素有一种天然远离宇宙中心的趋势(所以火在空气中向上燃烧)。

一个物体如果趋于静止,要么是组成这个物体的元素已经达到了它在宇宙中的自然位置(比如水和土到了地球中心),要么是被其他东西(如地球表面)挡住了。

其它观点在此就不一一列举了,大家看了之后有什么感想?

你有没有感觉,虽然这些观点在今天看起来很“幼稚”,但它却是一套自洽的体系。它能把自己的话圆回来,不会自相矛盾;它也能解释为什么物体会运动,能比较好的解释古人看到的各种现象。

甚至,对小孩子来说,这一套更符合“常识”,更容易被理解和接受。

但是,这并不是科学,而是自然哲学,真正的科学此时还没有诞生。亚里士多德世界观还要统治欧洲近两千年,一直到伽利略的出现。

03

伽利略的发现

伽利略认为,我们不能只对运动做定性的分析,还要做定量的计算。

我们应该用数学定量地描述物体的运动,再用实验去验证,而不再讨论诸如物体的目的、本性这种形而上,无法量化的东西。

你说物体越重下落得越快,那我就来做实验,看看一个重铁球和一个轻铁球是不是如此。

你说所有的物体达到它的自然位置之后就会趋于静止,那我就来做实验看看到底是不是这么回事。

做了一堆实验之后,伽利略大惊失色,他发现事情根本不是原来想的那样。感觉靠不住,我们得用实验说话。

首先,伽利略从一系列斜坡实验中发现:一个物体是否运动,跟它有没有受力没有直接关系,运动不需要外力来维持。

永远回不到左边高度的意思是:小球会一直匀速直线运动下去(假设地面绝对光滑)。

那么,力的作用到底是什么呢?我用力推椅子,椅子的状态确实改变了,也确实好像是我用的力气越大,椅子的速度就越大。

伽利略针对这些问题做了进一步研究,最后发现:力不是维持物体运动的原因,而是改变物体运动状态的原因。

也就是说,维持物体的运动不需要力,但改变物体的运动就需要力了,力还是非常有用的。

小钢球在绝对光滑的地面上能一直匀速直线运动,速度的大小和方向都不变。但如果我用力推小球,小球的速度就会改变。

伽利略的工作非常重要,他不仅开创了现代意义上的科学,指明了科学研究的基本方法。也身体力行,发现了大量物体运动的基本规律,给后人指明了方向。

04

牛顿力学

所谓定律,就是科学家通过做各种实验,从实验现象里总结出来的规律,它的正确性由实验保证。定律是无法通过数学公式“推导”或者“证明”出来的,那些证明出来的叫定理。

数学家会预设一些最基本的公理(比如欧式几何的5条几何公理),然后从这些公理出发,通过逻辑演绎证明各种定理,构建起一座座坚固的数学大厦。

因为数学并不用对现实世界负责,所以公理的选择具有很大的任意性。你可以选这几条作为公理,推出一套数学体系;也可以选那几条作为公理,推出另一套数学体系。

而定律就是从各种实验现象里总结出来的规律。因此,有些物理学家就以定律为根基,建立了一套理论体系,比如牛顿力学。

还有一些物理学家以原理为根基建立了理论体系,比如爱因斯坦的相对论。甚至,整个物理学都可以从最小作用量原理导出来。

原理并不是从某个具体实验总结出来的具体定律,而是大家从大量物理规律中总结出来的一些普遍成立的东西。这些原理对物理定律的形式有非常严格的限制,成了“管定律的定律”。

这样说,大家就明白牛顿的三大运动定律是什么地位了吧?它们是牛顿力学的根基,决定了牛顿力学的基本骨架。

下面,我们就来看看这三大定律到底都说了什么。

05

牛顿第一定律

牛顿第一定律:物体在不受力,或者受到的合外力为0时,它将保持静止或者匀速直线运动(即速度的大小和方向都不变)。

牛顿第一定律也叫惯性定律,它告诉我们“运动并不需要力来维持”。如果物体受到的合外力为0,那它之前是什么速度,后面就依然是什么速度。

如果我现在没动,那就打死不动,除非你用力推我;如果我现在有一个速度,那就一直以这个速度无脑前进,除非有力拦着我。

这也说明,没有力,宇航员照样可以运动,力的确不是维持物体运动的原因。

那么,力的作用到底是什么呢?伽利略在后半句里说了:力是改变物体运动状态的原因。

也就是说,虽然运动本身不需要力来维持,但是,如果你想改变运动状态,比如宇航员不想飘向太空深处,想回到飞船,这就需要一个外力来拉一把。

好,知道力可以改变物体的运动状态之后,我给你一定的力,你的速度能改变多少呢?

想要把这个账定量地算清楚,我们就需要牛顿第二定律。

06

牛顿第二定律

怎么算呢?

首先,既然力可以改变物体的速度,那我们首先就得找一个物理量来描述物体速度的变化。比如,汽车现在的速度是2m/s,1秒后变成了4m/s,那它的速度就在1秒钟之内变化了4-2=2m/s。

为什么汽车的速度会变化呢?

当然是发动机的牵引力让汽车的速度发生了改变,换成马车就是马的拉力让车的速度改变了。既然速度发生了改变,那肯定就有什么力作用在它身上。

那么,力的大小跟速度的变化有什么关系呢?是力越大,速度的变化就越大么?

一看好像没问题。我用两匹马拉车,1秒内可以让马车加速2m/s;如果有四匹马,或许1秒内就能让马车加速4m/s。

也就是说,我们用加速度这个物理量来描述物体速度变化快慢的程度。

那么,还有其它影响加速度的因素么?同样是一匹马,一个拉自行车,一个拉大卡车,你觉得它们的加速度会一样么?

很显然,物体的加速度不仅跟合外力有关,还跟质量有关:质量越大,同等拉力下获得的加速度越小,反之越大。

有这样的铺垫,牛顿第二定律就呼之欲出了。

牛顿第二定律也让我们有了一个全新的视角来审视“质量”这个概念。

惯性定律不是说“万物都很懒”么?没有外力推,一个个都打死不改变自己的运动状态。

但是,虽然大家都很“懒”,但是“懒”也分三六九等。有的物体是轻微的懒,轻轻一推就改变了运动状态;有的是极品的懒,用八抬大轿都抬不动。

那么,如何判断一个物体是一丢丢懒,还是非常懒呢?答:根据质量。

因为牛顿第二定律告诉我们,一个物体的质量越大,同等外力下产生的加速度就越小,即运动状态变化得越慢,这不就是更懒的意思么?

所以,内心越强大,越难被外界的诱惑所改变;质量越巨大,越难被外力的压迫所改变~

最后,再顺带看一下牛顿第三定律。

牛顿第三定律:相互作用的两个物体作用力和反作用力大小相等,方向相反(牛顿的原话是“每一个作用都有一个相等的反作用”,并没有提到“力”。但因为我们在讨论牛顿力学,所以教材里就直接用作用力和反作用力来表述,方便理解)。

这很好理解,比如我用力推一下墙,就会感觉墙也用力推了一下我,这两个力大小相等,方向相反。

好,理解了牛顿的三大运动定律,就理解了牛顿力学的根基,然后就可以分析万物的运动情况了。

07

物体如何运动?

宇宙万物到底是如何运动的?隐藏在运动背后的规律又是什么?之前有很多人回答过这些问题,但答案都不太令人满意。

现在,牛顿同学递交了他的答卷,一份令人非常满意的答卷。

答卷的主体就是牛顿三大运动定律,它的核心思想是:如果物体不受外力(或者合外力为0),它将一直保持原来的速度。如果合外力不为0,它的速度就会改变,即具有一定的加速度。想知道加速度到底是多少,就用牛顿第二定律F=ma去计算。

例如,为什么茶杯在桌子上静止不动?因为茶杯受到了一个向下的重力,和一个来自桌面的向上的支持力,这两个力大小相等方向相反(根据牛顿第三定律)。

因为我推椅子时,椅子在水平方向上受到了一个推力,合外力不为0。根据牛顿第二定律F=ma,这个合外力会让椅子产生一个加速度,于是椅子就动起来了。

为什么松手之后,椅子会慢慢停下来呢?

因为松手之后,推力没有了,椅子在水平方向上受到的合外力就只有来自地面的摩擦力(摩擦力一直都在,但之前比推力小)。摩擦力与椅子运动的方向相反,因此会产生一个让椅子减速的加速度,于是椅子就慢慢停了下来。

为什么苹果熟了会往下落呢?因为苹果没熟时,苹果受到了一个向下的重力和一个树枝向上的拉力,这两个力大小相等方向相反。所以,苹果受到的合外力为0,于是保持静止。

苹果熟了以后,树枝承受不了苹果的重量,就跟苹果分离了。于是,苹果受到的合外力就只有向下的重力。根据F=ma,苹果会有一个向下的加速度,因此苹果会加速往地面掉落。

为什么月亮会围着地球转呢?因为地球和月亮之间有一个万有引力,月亮受到的合外力就是这个引力。根据F=ma,月亮会有一个加速度,这个加速度不断改变速度的方向,让月亮围着地球转。

为什么电子在电场中会运动呢?因为电子在电场中会受到一个电场力,此时电子受到的合外力就是这个电场力。根据F=ma,电子会有一个加速度,于是电子开始加速运动。

来来去去就这三板斧,一套组合拳包打天下,这就是牛顿力学。

08

从运动到受力

所以,大家现在明白为什么牛顿第二定律F=ma这么重要了么?

因为这个公式的左边代表了物体的受力情况(合外力F),右边代表了物体的运动情况(加速度a),F=ma则把物体的受力情况和运动情况紧密地联系在了一起。

那么,世界上都有些什么力呢?面对各种各样的力,我们又要如何研究呢?

答案是:先分类,再各个击破。

我们先对所有的力逐一盘问:你导致物体的运动状态发生了这样的改变,你是什么力?

科学家就这样对各种运动现象逐一考察,找出它们背后的力,然后对这些力进行分类。

最后你猜结果怎么着?

最后,大家惊奇地发现:只要4个桶,不用成百上千,也不要十个八个,只要4个桶就能把人类迄今为止发现的所有力都装进去。

什么意思?意思就是我们对各种力进行分类,发现力的数量虽然多,但种类却很少,只有区区4种(不过科学家还是觉得多,他们巴不得只有1种才好),这4种力分别是:引力、电磁力、强力、弱力。

这就非常有意思了。

你看啊,牛顿第二定律告诉我们:如果你想研究物体的运动情况,就去分析它的受力情况。知道了受力情况,就能通过F=ma求出它的加速度,进而知道它的运动情况。

这样,问题的性质就从根本上发生了变化:如果总共只有4种力,那我完全可以把它们一个个弄清楚啊,毕竟4个又不多。

深入研究4种力,回报是掌握一切物体的运动情况,这买卖,太值了!

当然,你可能会疑惑:真的只要4种力就能搞定一切?有那么便宜?我读书少,你不要骗我。

虽然我们说有4种力,即引力、电磁力、强力、弱力。但是,强力和弱力只在原子核级别才有显著作用,日常生活中一般感觉不到它们的存在。

于是,你在高中会碰到的所有力,就只有引力和电磁力两种。

接下来,我们就来仔细看看这两种力,看看为什么说日常生活中只能感觉到引力和电磁力。

09

什么是引力?

引力,又叫万有引力。

万有的意思很明显,就是说这种力是普遍存在的,任何两个有质量的物体之间都有这样一种力,谁也跑不掉(在牛顿力学里先这样理解,以后学了广义相对论,你会对引力有更加深刻的认识)。

这个意思很直白,就是说万物之间都会相互吸引。

你可能会疑惑:不会吧,万物之间都有吸引力?我和同学、课桌、教室之间也有?为什么从来没感觉到?

为什么引力小呢?当然是因为质量小。你的体重在引力眼里不值一提,想感受引力,就得选个质量大的。

比如,你可以选择教学楼,你和一栋楼之间的引力就比两个人之间的大多了(想想教学楼的质量是你同学的多少倍)。不过,这个引力还是太小,依然感觉不到。

好,那我就不客气地签收了!这次你选对了。

引力虽然是万有的,但是它非常微弱,我们需要地球这个级别的物体才能直观感受到它的存在。

地球和我们之间的引力深深影响着每个人的生活,它给了我们安全感,也给了我们恐惧。它让地球不会分崩离析,也俘获了月亮的心……

你可以想一想,为什么你每次跳起来之后都会落回地面?

你可能觉得这理所当然,或者从来就没想过,似乎“每个物体都会往下落”是天经地义的事情(就像亚里士多德说的“XX天然有向地球中心运动的趋势”一样)。

但是,你想想惯性定律,万物都是“懒”的,人也一样。

如果没有外力影响,物体会一直保持原来的运动状态。原来是静止的,后面就一直静止;原来有一个速度,后面就一直以这个速度匀速直线运动。

但是,我们跳起来后明明没有跟任何东西接触,那这能是什么力呢?答案是引力,是我们和地球之间的万有引力。

任何两个物体之间都有引力,地球和地面物体之间当然也是。你可以把地球想象成一个巨大的吸铁石,它对地面上的任何东西都有强大的吸引力,所以高处的物体总会往低处走。

于是,你跳起来,又被吸回来;苹果会被吸到地面,高处的水被吸到低处;你提着一袋东西觉得重,那是因为地球想把这袋东西吸过去,但你“死死拽着”不放,你在跟地球拔河;月亮一直围着地球转,也是因为被地球吸住了,想跑跑不掉……

这些,都是地球引力干的,它吸引着一切,感知极强。

因为我们生活在地球,从小就感受着来自地球的引力,所以早已见怪不怪。

但是,如果哪天你到了月球,因为月球的引力比地球小很多,你可能轻松一跳就是两层楼高;如果在外太空,可能轻轻一跳,就永远下不来了。

从小我就知道人类生活在地球表面,那问题就来了:我住在地球“上面”,头朝上,那住在地球另一面的人岂不是脚朝上?为什么他们没有掉下去?

直到学了万有引力,我才恍然大悟:原来大家都是被地球吸住的!

根本就没有什么绝对的上下,也不是上面的东西天生就要往下落,而是大家都被地球吸得往地心方向跑而已。

好,到这里,相信大家对引力就有一个概念了。

但这还远远不够,虽然我知道苹果下落、月亮围着地球转都是引力造成的,那引力具体是怎么影响它们的呢?

这个地球引力到底会使苹果以多大的加速度下落?1秒后苹果的速度是多大,2秒后会下落几米?它会使月亮以多大的周期围着地球转?

如果不把这些细节搞清楚,我们也不好意思说弄懂了它们的运动情况。

说白了,我们必须能定量算出两个物体间引力的大小,然后才能用牛顿第二定律F=ma算出具体的加速度,进而分析物体的运动细节。

10

万有引力定律

引力的规律要如何找呢?

前面说了,引力非常微弱,地面物体之间的引力非常小。想通过观测它们来总结引力的规律,怕是行不通。

这一步,很多科学家都在走,但牛顿凭借他逆天的数学和物理才华(唯一一个同时稳居数学、物理Top3的人),第一个走出了迷宫,给出了描述引力的精确定律,并用它成功解释了当时一切跟引力相关的运动现象。

这一仗,牛顿大获成功,这个能精确描述引力的定律,被称为万有引力定律。

牛顿是如何得到这个定律的,这里不细说。我们先来直观地感受一下,来猜一猜这个定律应该长什么样。毕竟它号称能精确描述万有引力,我们看看它的描述跟我们的直观感受是否冲突。

大家知道,任何两个物体之间都有引力,而且质量越大,引力越大。

那么,引力就只跟质量有关么?太阳的质量比地球大得多,为什么我们没有被太阳吸走?答案当然是:因为地球距离我们更近。

所谓强龙压不过地头蛇,我的地盘我做主,任何势力都有他的范围,引力亦然。所以,除了质量,引力还应该跟距离有关。

而且,容易想象,引力跟质量、距离的关系,一定是质量越大,引力越大;距离越大,引力越小。

这不是什么问题,真正的问题是:它们之间定量的关系到底是怎样的?我把质量增大到原来的2倍,引力会增大多少?把距离扩大为原来的2倍,引力又会减小多少?

假设有两个1kg的铁球,它们之间有一定的引力。那么,如果其中一个铁球的质量从1kg增加为2kg,你觉得引力会变成多少?是原来的2倍(1×2),3倍(1+2),还是其它什么的?

理论上来说,应该是2倍,也就是说质量之间应该是乘法关系。

因为我可以把2kg的铁球看成两个1kg的铁球,那每个1kg铁球的引力就和原来的一样,新的引力自然就是原来的2倍。

所以,两个物体之间的引力F应该和这两个物体的质量m1、m2的乘积成正比。其中任何一个物体的质量增加为原来的多少倍,它们之间的引力就增加为原来的多少倍。

引力和质量的关系好说,真正困难的是和距离的关系。

假设两个小球相距1米,现在它们之间的距离扩大为2米。那么,它们之间的引力会减小为原来的多少呢?是原来的1/2,1/4,还是1/8什么的?

有人说你可以去做实验啊,看看把两个小球之间的距离增加一倍以后,它们之间的引力会缩小为原来的几分之一。

但是,引力的实验不好做啊。

因为引力非常微弱,地面上两个物体之间的引力很难测量。而且,引力是万有的,我们很难屏蔽其它物体对实验的影响。

引力有显著作用的地方,还是在天上。开普勒就是从星体运动的轨道数据里发现了行星运动三大定律,牛顿从这里打开了思路,最终发现(其实胡克、哈雷等人也发现了)引力跟距离的平方成反比。

也就是说,如果两个物体之间的距离变为原来的2倍,它们之间的引力就减小为原来的1/4;距离变为3倍,引力就减小为原来的1/9。

其实,平方反比定律在自然界非常常见。

大家想想圆的周长公式C=2πr,周长跟半径(即半径的1次方)成正比。圆的面积公式S=πr⊃2;,球体的表面积公式S=4πr⊃2;,面积跟半径的平方(2次方)成正比。圆球的体积公式V=4πr⊃3;/3,体积跟半径的立方(3次方)成正比。

发现没有,1维的周长跟半径的1次方成正比,2维的面积跟半径的2次方成正比,3维的体积跟半径的3次方成正比。

而我们现实世界是3维的。这就意味着,如果有个东西爆炸了,它释放出来的能量波就会以球面的形式向外扩展。

同样,如果我们的空间是4维的,你就会看到各种立方(3次方)反比定律,这也是科学家们检验是否存在高维空间的一种办法。

好,理解了这些,引力跟距离的平方成反比就非常正常了。

于是,我们就知道了:两个物体之间的引力F跟两个物体的质量m1、m2成正比,跟它们之间距离r的平方成反比。

图中F表示引力,因为引力是相互的,你吸引我,我也吸引你。而且这种吸引大小相等、方向相反,图里就用F1、F2分别表示。

因为质量越大,引力越大,所以分子就是两个物体质量m1和m2的乘积。因为空间是3维的,所以引力的大小跟距离的平方成反比,于是分母是r⊃2;。最外面的G是万有引力常数,数值大概是6.67×10^-11N·m⊃2;/kg⊃2;。

有了这个公式,理论上,只要我们知道两个物体的质量和它们之间的距离,就能算出引力。知道了引力F,根据牛顿第二定律F=ma就能求出物体的加速度a,进而知道物体的运动情况。

于是,一个完美的引力闭环就形成了。

我们终于可以同时掌握上游的引力计算,中游的引力转加速度以及下游的加速度分析运动了。

既然任督二脉已经打通,内循环也转了起来,要不,我们用牛刀杀一只鸡试试?

11

下落的苹果

跟以前不同的是,我们现在已经知道了万有引力定律。

我们不仅知道苹果下落是由地球引力造成的,还能把这个引力的大小算出来。求出引力后,秉着“力是改变物体运动状(速度)”的想法,用牛顿第二定律F=ma把苹果下落的加速度a算出来,再根据加速度分析苹果的下落情况。

简单来说就是三步走:第一,找到让苹果下落的力(这里就是地球和苹果之间的引力,用万有引力定律来求);第二,找到合外力后,用牛顿第二定律F=ma求苹果的加速度a;第三,利用加速度分析苹果下落的运动情况。

整个思路是如此的简单而清晰,我们一步步走。

苹果的质量好说,你的苹果是半斤还是六两,称一称就知道了。不过,我们这里并不限定苹果的质量,大小随你挑,因为你很快就会发现苹果的下落情况跟苹果的质量压根没有关系。

这是一个让人非常吃惊的“巧合”,爱因斯坦就从这里撕开了通向广义相对论的一个口子。

地球的质量也是一个固定的数值,可以去查。因为地球的质量比较大,我们暂且记为大写的M。

那么,剩下的就只有苹果和地球之间的距离r了。

但是,如果物体很大,大到不能当作一个质点呢?

比如地球,地球上每一块土壤对苹果都有吸引力,地球作为一个整体对苹果的吸引力应该是地球上所有物质对苹果吸引力的总和。

当然,你可以把地球切成无数小块块,利用万有引力定律算出每一小块与苹果之间的引力,再把所有的引力加起来。

但是,这玩意明摆着要用微积分啊,而当时并没有微积分。

于是,牛顿说你们等我一下,然后跑回去吭哧吭哧地发明了微积分,再回来把问题解决了,一旁的胡克只能干瞪眼。

这样,你就知道一个数学厉害的物理学家有多可怕了吧?

地球的半径R大概是6371千米,苹果树高3米,这个树高在地球半径面前当然可以忽略。也就是说,苹果到地球的距离,实际上就等于地球的半径R。

算出了合外力F的大小,接下来就进入第二步,也就是利用牛顿第二定律F=ma计算苹果下落的加速度a。

于是,苹果下落的加速度a,最后就只跟地球的质量M,地球的半径R,以及万有引力常数G有关,反而跟苹果自己的质量m无关。

这是什么意思?

意思就是说,苹果下落时,不管苹果的质量是多少,它下落的加速度都一样,因为这个加速度只跟地球的质量和半径有关。

加速度一样,如果苹果的初始状态也一样(比如都是静止的,初速度为0),那苹果在下落过程中每一分每一秒增加的速度都会一样,导致的结果就是两个苹果的运动状态完全一样。

这下子,你知道为什么两个不同质量的苹果(铁球)会同时着地了吧?

如果苹果一开始是静止的,1秒后它的速度将增加到9.8m/s,2秒后达到9.8×2=19.6m/s,以此类推……

而且,可以想象,这个规律不仅对苹果适用,对铁球,对石头,对羽毛,对地面附近任何只受到引力下落的物体都是适用的,因为这个9.8m/s⊃2;只跟地球的半径和质量有关。

为什么要一直强调地面附近呢?

因为只有在地面附近,我们才能忽略物体到地面的高度,认为物体到地心的距离等于地球半径。如果物体飞得太高,到地心的距离不能再用地球半径(还得加上物体距地面的高度)表示,那加速度就自然不再是9.8m/s⊃2;。

另外,因为地面有空气,任何物体下落时都会受到空气阻力的影响。所以,如果物体的重力比空气阻力大很多,比如铁球、苹果,那我们就可以忽略空气阻力,认为下落的加速度还是9.8m/s⊃2;。

但是,对于羽毛这种非常轻的物体,重力很小,空气阻力无法忽略。所以,我们放下羽毛时,就会觉得羽毛没有苹果落得快,并不会一秒后加速到9.8m/s。

当然,地球并不是一个绝对球体,它本身也在缓慢自转。因此,地球表面不同地方(比如赤道和南极)的重力加速度也存在微小差异。不过,一般情况下我们并不用考虑它们,甚至,为了计算方便,题目中一般取重力加速度g为10m/s⊃2;。

于是,我们就知道了苹果在地面大约以10m/s⊃2;的加速度下落,然后我们就知道了苹果下落的一切运动信息。

比如,如果苹果从静止开始下落,1秒后它的速度是10m/s,下落高度是5米(想想为什么);2秒后速度是20m/s,下落高度为20米……

我们可以知道苹果在任意时刻的速度和下落高度,这才叫掌握了苹果的一切运动情况。

怎么样?有了万有引力定律,我们果然可以从物体的受力情况出发,算出它的加速度,再精确分析它的运动情况。

你告诉我物体如何受力,我果然能告诉你物体如何运动,牛顿诚不我欺也~

12

从苹果到高中物理

到这里,我们就完成了一个最典型运动过程的分析:一个物体在某种力(重力或者其它力)的作用下开始改变运动状态,这个改变就体现在它具有一定的加速度a上。而加速度a可以通过牛顿第二定律F=ma得到,然后我们就可以通过加速度分析物体的运动情况了。

基本上,这就是高中物理要学的一切,是高中物理的主干,也是整个牛顿力学的主干。

好,如果牛顿力学的核心就是这么点东西,但你要出题,你要给千万考生出题。而且,出的题一不能超纲(比如不准用微积分),二还得有区分度,怎么办?

牛顿力学的核心框架就是通过分析物体的受力来分析物体的运动。于是,牛顿第二定律F=ma就把所有问题都切割成了两部分:受力部分和运动部分。

那我们出题也就有了一个基本的思路:我可以已知物体的受力情况,让你求物体的运动情况;或者反过来,已知物体的运动情况,让你求物体的受力情况。

前面我们分析了苹果在引力作用下的运动情况,我也可以把这个过程颠倒过来:告诉你苹果是怎么运动的,让你求苹果的受力情况。

然后,引力的问题基本上就完了。

那么,如果我还想把问题弄复杂一点,怎么办?能怎么办,引力玩完了,那就再换一种力呗。

那么,引力之外,就只有电磁力了。

13

电磁力

一看到电磁力这个名字,很多人就觉得这是不是只有在电线、磁铁出现的地方才存在的力?

但是,按照上面的说法,似乎日常生活中除了引力,其它现象都应该是电磁力主导的。

受引力影响的现象还是很好判断的,大抵就是被地球吸引着往下落的现象。但是,日常生活中明显还有很多不是引力主导的现象,比如推桌子,拉物体,桌面拖住茶杯,压缩弹簧,摩擦地面等等。

在日常生活中,这些力都有一些比较形象的名字:推力、拉力、支持力、弹力、摩擦力。

它们肯定不是引力,按照上面的说法,不是引力似乎就应该是电磁力了。但是,这些现象里没有电线和磁铁,好像又不是电磁力。

随后,小编给元芳点了个赞。

什么原因呢?你看啊,不管是推力、拉力、支持力、弹力还是摩擦力,它们都是“接触力”,都是两个物体非常靠近之后产生的一种力。

其实,这个问题并没有那么显而易见。你再想一下,人在推桌子时,到底发生了什么?

我们知道,人和桌子都由无数分子组成,宏观上我的手通过“接触”桌子推动了桌子,微观上则是组成手的分子不断靠近组成桌子的分子。

而分子是由原子组成的,原子是由带正电的原子核和带负电的电子组成。这样,当这些分子、原子相互靠近时,它们之间就会产生一种电磁力,这就是分子间作用力,也叫范德华力。

大量分子间的范德华力,就形成了我们宏观上感觉到的推力、拉力、支持力、弹力、摩擦力…

紫色曲线表示斥力随距离的变化图,黄线表示引力随距离的变化图,红线是引力与斥力的合力,也就是综合的分子间作用力的变化图。

可以看到,不管是引力还是斥力,都是距离越远越小,越近越大。但是,由于两者变化趋势不同,最后总的分子间作用力就是红线这样的变化规律。

大体上,当两个分子间距离很远时,分子间以引力为主;当距离小到一定程度时,斥力极具增大,成为主导。

所以,为什么你能推动桌子?

因为当你的手接近桌子时,手分子和桌子分子间的距离在急剧减小,它们之间斥力就急剧增大。于是,桌子就在这个斥力的作用下开始加速运动。

而这个斥力,也就是宏观上说的推力,就是分子间作用力,是一种电磁力。

其他的拉力、支持力、弹力、摩擦力也是类似的,这样你就能明白为什么我们说日常生活中除了引力就是电磁力了吧?你要是不放心,可以再想想生活中的其它现象,看看有没有引力和电磁力都无法解释的。

手和桌子之间的推力是大量分子间电磁相互作用的结果,因为分子数量巨大,所以这个过程非常复杂。

我们研究问题当然都从最简单的入手,简单问题搞清楚了,再去处理复杂问题。一堆分子间的电磁力太过复杂,我们就先来看看最简单的情况:两个电荷之间的电磁力。

14

库仑定律

任何两个有质量的物体之间都有引力,这个引力由万有引力定律描述。

类似的,任何两个有电荷(带有正电或者负电的粒子)之间都有一种电力,这种力叫库仑力(一个叫库仑的人先发现的),它由库仑定律描述。

比如,假设两个电子的电荷量分别为q1、q2,它们之间的距离为r。那么,这两个电子之间就存在一个互相排斥(同性相斥,异性相吸)的库仑力F。

有了前面猜万有引力定律的经验,库仑定律就很容易猜了。

类似的,很显然应该是电荷量越大,库仑力越大,所以库仑力的大小应该和电荷量的乘积成正比。

因为处在三维空间,所以库仑力跟万有引力类似,也跟电荷之间距离的平方成反比。

不过就是把万有引力定律里两个物体的质量m1、m2换成了电荷量q1、q2,万有引力常数G变成了这里的库仑常数k。

但是,库仑定律跟万有引力定律有一个非常大的差别:所有物体的万有引力都是相互吸引的,没有第二种方向;电荷之间的库仑力却有方向,同性相斥,异性相吸。

也就是说,如果两个电荷都带负电(比如两个电子),那它们就互相排斥;如果一个带正电一个带负电(比如一个质子一个电子),那它们就互相吸引。

很多中学生在学习万有引力定律和库仑定律时,惊讶于它们之间的高度相似,就想着能不能把它们统一起来。但是,就是这个符号的差别,让它们的统一工作难如登天,爱因斯坦后半辈子都在琢磨这个事,直到去世都拿它没办法。

引力的这种无符号性(只有吸引)极其特殊,它仿佛在暗示我们:在引力眼里,众生平等。引力似乎是一个背景,一个舞台,它对台上所有的演员都一样,不偏不倚。这种思想后来启发爱因斯坦创立了广义相对论。

你看啊,库仑力是跟距离的平方成反比的。因此,如果某个电荷在库仑力作用下开始运动,一动距离就要变了吧?距离一变,这个库仑力会按照距离的平方跟着变,那就意味着电荷的受力情况也变了。

受力变了距离又要变,距离变了受力再变,如此循环下去。这显然超出了中学物理能够处理的范围。

你可能觉得奇怪,万有引力定律跟库仑定律一样,也是平方反比。那为什么中学可以出引力的题目,出苹果下落的题目,却不能出这种库仑力的题目呢?

因为,我们在地面处理引力问题时,基本上只考虑物体和地球之间的引力。

在地面,物体的运动距离(比如苹果树的3米)相对地球半径而言太小了,所以我们完全可以忽略物体和地球之间的距离变化,认为距离r是不变的。

如果距离r不变,那物体和地球之间的引力就是一个恒力。这样产生的加速度也恒定,物体就会做最简单的匀加速运动,这是中学可以处理的。

因为引力很弱,只有大到地球这个尺度才会产生显著的引力效应,所以我们才能忽略地面物体的运动距离,认为地球引力是一个恒力。而电磁力是非常强的,你完全无法忽略这个距离r的变化,也就没法把库仑力也当作一个恒力。

这些硬币能够被吸上去,就意味着:这么一个小小的磁铁与硬币之间电磁力,竟然比整个地球与硬币之间的引力还要大。

一个磁铁施加的电磁力,就能打败整个地球施加的引力,你说电磁力比引力强多少?这样你就能明白为什么中学物理无法处理库仑力作用下的电荷运动了吧?

运动会导致库仑力发生改变,这样电荷的加速度也会随之改变,这是非常复杂的变加速运动,没有微积分根本处理不了,高中物理能勉强处理加速度不变的匀加速运动。

于是乎,虽然我们知道了库仑定律,知道了如何计算两个电荷之间的库仑力。但很可惜,库仑力作用下的电荷运动过于复杂,没有微积分我们根本处理不了,怎么办?

电磁力这么重要,我们当然不能丢下它不管。库仑力作用下的电荷运动因为受力过于复杂而无法处理,那我就把受力情况搞简单一点,也给你一个大小恒定的电磁力,行不行?

行啊!如果电磁力成了恒力,那电荷的加速度就不变了。这样,问题就也变成简单的匀加速运动,与苹果下落别无二致,so easy!

那么,怎样把电磁力简化为恒定大小的力呢?

这就需要引入一个全新的概念:场。

15

场的引入

场是个非常非常重要的概念,库仑发现库仑定律时(1785年)还没有场,它是法拉第(1791年~1867年)最先提出来的。

麦克斯韦后来用精准的数学语言描述了法拉第的思想,得到了能够描述一切经典电磁现象的麦克斯韦方程组。

问题就出在这个不起眼的“立马”上。

你想,根据公式,是不是只要两个物体的质量和距离一确定,它们之间的引力立马就确定了(质量距离一确定,引力立马就能算出来)?如果两个物体的质量发生了一丁点改变,它们之间的引力也会立马发生改变,中间不需要任何时间,整个过程是瞬间完成的。

也就是说,根据万有引力定律,引力的变化是超距的,无论多远都能瞬时完成。

举个例子,假设我们根据万有引力定律算出了地球和太阳之间的引力,因为有这么一个吸引力,地球才会围着太阳转。那么,如果太阳的质量突然发生了改变(或者极端点,太阳突然消失了),那根据万有引力定律,太阳的质量突然改变了,太阳和地球之间的引力也会突然改变。

然而,我们都知道一个事实:光从太阳发射到地球大概需要8分钟。也就是说,我们现在看到的太阳光其实是8分钟以前的太阳发出的。

这其实就是在问:引力到底是不是瞬时超距的?它能否超越空间,瞬间从一处传到另一处?

那怎么办?从信念上来看,牛顿不相信力能够超距传播,但是超距的万有引力定律工作得非常好,能够精准描述当时已知的一切引力现象。

于是,牛顿不怀好意的写到:我把这个问题留给读者。

原因是速度。

牛顿时代,对电和磁的研究还没有开始,大家研究的都是一些低速(相对光速)现象。不管是地球围着太阳转,还是苹果下落,这个速度相对光速(30万km/s)都是极小的,可以忽略不计。

但是,法拉第-麦克斯韦时代研究的电磁现象,就是高速现象了(你按下开关,灯立马就亮了)。

力的确不会超距传播,但牛顿研究的都是低速现象,所以这个“误差”极小,于是超距下的万有引力定律依然具有极高的精度。

但到了电磁世界,这个“误差”,不,这已经不叫误差了,这就是错误。

因此,一个正确的电磁理论,必须要求你能抛弃力的超距传播图景,这才逼出了法拉第的场和麦克斯韦的方程组。

还是以两个电荷之间的库仑力为例,库仑定律和万有引力定律那么相像,一开始人们当然觉得两个电荷之间的库仑力也是超距的。认为一个电荷的电荷量发生了改变,另一个电荷受到的库仑力立马就会改变。

有了场以后,两个电荷相互作用的图景就变成了这样:一个电荷在空间中建立了电场,另一个电荷因为处在这个电场里,于是就会受到了一个电场力(代替原来的库仑力)的作用。

如果电荷移动了,或者电荷量发生了改变,那它在空间中建立的电场也会发生改变,但这个改变是以光速进行的。于是,当改变的电场以光速传到另一个电荷那里时,它受到的电场力才会改变。

看到没有,现在两个电荷之间的力并不会随着一个电荷的改变而立马发生改变。电荷只能改变它产生的电场,电场的变化以光速向四周传播,它什么时候传到另一个电荷那里,电荷受到的电场力才会改变。

这就好比你在水边击起了一个水波,这个水波不会立马影响我,它需要等这个水波传到我这里时才会影响我,电场亦然。

于是,有了场,超距的电磁力就消失了。

这不仅解决了力的超距传播难题,也让我们终于可以在中学物理框架内处理电磁力问题。

为什么呢?前面说了,库仑力的大小是随距离变化的,这就导致了库仑力作用下的电荷运动会变成非常复杂的变加速运动,中学物理没法处理。

现在有了场,一个电荷就只对它周围的电场负责,而不用再管库仑力。

那么,只要保证电场是均匀的,就能保证电荷受的力是恒定的,这样电荷的运动就能变成简单的匀加速运动。

16

简单的力

于是,我们终于可以把电磁力的题目出得让中学生也可以做了:我直接给你一个匀强电场(电场强度处处相等),这电场怎么来的我不管。

所以,这就是一个简单的匀加速问题,跟苹果下落别无二致。只不过,苹果下落的加速度是重力加速度g,电荷在匀强电场中的加速度为qE/m,其它都一样。

于是,在引力之后,我们又出现了另一个非常常见的力:电场力。

此外,运动电荷在磁场中会受到一个大小恒定的洛伦兹力。假设电荷的带电量为q,速度为v,磁场的磁感应强度(由于历史原因无法叫磁场强度)为B。那么,它受到的洛伦兹力F可以表示为:F=qvB。

除了电场力、洛伦兹力,还有两个力也经常碰到:摩擦力和弹力。

虽然它们的本质都是电磁力,都是大量分子间作用力的宏观结果。但分子数量太大,虽然我们知道两个电荷之间的电磁规律,但如果你想把所有分子间作用力都搞清楚,算出它们的总和(也就是宏观的摩擦力和弹力)是不现实的。

既然摩擦力能成为中学物理的另一种常见力,那就意味着它必须是一种简单的恒力。

从宏观理解摩擦力是很容易的,摩擦摩擦,无非就是两种物体间的一种相互作用力。一个木块在桌面上运动,它跟桌面之间就有一个摩擦阻力,在地板上运动也有一个摩擦阻力。

很显然,物体表面越粗糙,摩擦力越大;物体表面越光滑,摩擦力越小。

我们可以用一个摩擦系数μ来度量两个物体之间摩擦力的强弱。而且很巧,这个摩擦系数只跟物体的材质有关,跟物体的运动速度无关,这样摩擦力就正式晋升为一种恒力。

举例,假设质量为m(重力就是mg)的物体在摩擦系数为μ的材料上水平滑动,那摩擦力f就可以表示为摩擦系数和重力的乘积,即:f=μmg。

最后一个高中题目里常见的力就是弹力。弹力,顾名思义,是压缩或者拉伸弹簧时受到的力,它由胡克定律描述。如果弹簧的弹性系数为k,弹簧被压缩或拉伸了x的长度,那它受到的弹力F可以表示为:F=-kx。

这个负号表示弹力方向与弹簧位移方向相反,你向右拉弹簧,弹力当然向左。

以上为大家介绍了万有引力、库仑力、电场力、洛伦兹力、摩擦力、弹力,基本上高中的常见力就这么些了。

17

如何出题?

把这些力亮出来干嘛呢?当然是分析在这些力的作用下物体是如何运动的。

前面分析了苹果在引力作用下的运动情况,为了让问题复杂点,我们引入了其它力。

一个苹果在重力(用万有引力定律计算)作用下获得了一个加速度(用牛顿第二定律F=ma计算),然后根据加速度分析苹果的运动情况,这是一个完美的闭环。

我们把重力换成上面的各种恒力,整个分析流程不会有任何变化。

或者反过来,告诉你物体怎么动的,让你从物体的运动情况求出加速度a,再利用牛顿第二定律F=ma算出物体受到的合外力,分析物体的受力情况。

在这个闭环里,只要能给出描述这个力的公式,其它步骤一模一样。牛顿第二定律F=ma只管物体受到的合外力是什么,至于这个力是重力提供的,还是电场力、摩擦力、弹力提供的,它不在乎。

所以,这种单纯增加力的种类的做法,似乎有点“换汤不换药”,也没有增加多少复杂度。

那么,如何把题目搞得再复杂一点呢?

既然牛顿第二定律F=ma把问题分成了受力和运动两部分,中学物理又由于处理能力有限,无法引入太复杂的力(比如空气阻力),那就只能把受力部分和运动部分本身搞得再复杂一点。

18

受力部分复杂化

只有一个重力很简单,那我们再来加点其它力。

比如假设地面不光滑,那就得考虑摩擦力;加个电场,那还得考虑电场力;加个磁场,那还得考虑洛伦兹力。

由于力是一个矢量,我们可以把它按照平行四边形法则分解。

同样,重力是竖直向下的,我可以把它沿着斜面和垂直斜面进行分解。这样,让物体沿着斜面加速运动的仅仅是沿着斜面方向的分力。

我们把这个分力算出来,套入F=ma,就能求出沿着斜面方向上物体的加速度了。这里会涉及一些简单的三角计算,也是很简单的事。

总之,我们会用各种方式把这个物体的受力情况搞复杂,让你去分析这个物体的合力(或者某一方向的合力),再利用牛顿第二定律F=ma求出加速度(或某一方向的加速度),再分析运动情况。

把受力情况搞复杂的方法,可以是添加各种其它形式的力,也可以是添加类似斜面这样的东西让它复杂化。但是,只要我们知道各种力的描述公式,知道力如何进行合成分解,这些都是很简单事情。

知道了出题人会如何把受力情况搞复杂以后,我们再来看另一半:如何把运动情况搞复杂?

19

运动部分复杂化

因为不让用微积分,无法处理复杂的变加速问题,我们就来分析一个最一般的匀加速运动。一般的意思就是:把它搞定了,其它所有情况就都搞定了。

比如,一个苹果从树上静止下落,1秒后下落了5米,速度变成了10m/s。那么,这个过程中,初速度V0=0,末速度Vt=10m/s,运动时间t=1s,加速度a=g=10m/s⊃2;,运动距离S=5m。

这本质上还是加速度的定义。

再看距离S,我们是如何求物体的运动距离的呢?

因为是匀加速运动,我们可以用初速度V0和末速度Vt的平均值(V0+Vt)/2当作整个运动过程的平均速度。

比如,物体一开始速度为0,1秒后速度变成了10m/s,那它这段时间的平均速度就是(0+10)/2=5m/s。当然,这只在匀加速时成立,如果是变加速就不能这么干了(为什么不能你可以想一想)。

但是在学习物理时,不建议在没有理解它的物理意义,没搞清楚它背后的物理图像之前死记硬背任何公式。

那要怎么做呢?

很简单,要求距离S就得利用关系2(S=(V0+Vt)×t/2),这里V0和t都有了,就差一个Vt,而Vt可以根据关系1(Vt=V0+at)得到。

所以,最终的结果就是把关系1的Vt代入关系2,这样我们就能得到了一个不含Vt的关于S的表达式。

你亲自去推一下,就会得到这样一个结果:S=V0t+at⊃2;/2。

这个式子非常常用,但是我非常不建议你直接把这个公式死记下来,然后用它去套各种题目。

因为这个式子的物理意义不是很明显,你可以把这个式子记下来,但很难看清它背后的物理图像。

物理学是描述自然的,自然就在我们眼前,我们能看到,能感觉到。所以我们用来描述自然界的物理语言,也应该是能看到,能感觉到的。

好,再来试一个,如果把时间t消掉,初速度V0、末速度Vt、加速度a、距离S之间就会有这样一个关系式:Vt⊃2;-V0⊃2;=2aS。同样,别去死记它,别把非常有意思的物理搞成了无聊的字母游戏。

本着这种精神,你会发现出题人在物体运动状态这一边能动的手脚也非常有限,无非就是在这几个量之间变来变去。

20

场景复杂化

再回到核心的牛顿第二定律F=ma上来。

牛顿第二定律F=ma是整个牛顿力学的核心,它把物体的受力情况和运动情况联系在了一起,并且告诉我们物体受力之后要怎样运动。

围绕它出题,也只能一方面把物体的受力情况复杂化(添加各种各样的力,复杂化受力分析),一方面把物体的运动情况复杂化(V0、Vt、a、t、S五个量颠来倒去的变)。

如果还不够复杂,那就增加场景的数量。

比如,我让小球从光滑斜面上滚下来,这很简单。那好,我再增加一个场景:小球滚下来之后再经过一个摩擦力无法忽略的地板,在摩擦力的作用下慢慢减速。

还不够复杂?那我再增加一个磁场(电场),让小球滚进磁场(电场)里运动;加一个弹簧,让小球被反弹运动;加一个传送带……

于是,许多小场景就拼成了一个大场景,问题也就更加复杂了。这就像《猫和老鼠》里经常出现的一个机关触发另一个机关的场景,不停的运动。

从这种观点看世界,力处在最核心的地位。理论上来说,只要我们知道物体此刻的状态,知道它受到的力,我们就能根据F=ma算出物体后面任意时刻的状态(速度、位移都不在话下)。

牛顿也是根据这个,将“上帝”逐出了太阳系。决定物体如何运动的,不是所谓的“上帝”的意志,而是它受到的力。

因此,这种以“力”为核心观念的理论被称为牛顿力学也是非常贴切的。

接下来,我们换一种眼光看世界。

21

另一种角度

从牛顿力学的观点来看,只要我们知道了物体的初始状态和受力情况,就知道了物体的一切。但是,理想很丰满,现实却很骨感,很多问题理论上可以计算,实际操作起来却复杂无比。

你想啊,牛顿力学的核心思想是物体下一刻的状态由上一刻的状态以及受力情况决定。这样,我们分析下一个状态,就要依赖上一个状态,而上一个状态又依赖于上上一个状态。

又或者,我们根本没有能力(受限于观测水平、计算能力等)把中间过程完全搞清楚,但我们很希望知道最后的结果是啥样的。

比如,你经营一家超市时,很可能不是很关心每个月都有谁买了什么具体的东西。但是,你肯定关心这个月总共卖了多少钱,进货花了多少钱,房租人力成本又花了多少钱。

因为你知道,对于你来说:钱既不会凭空产生,也不会凭空消失(你没有能力印钱,也不会发疯去撕钱),它只会从一个地方流入到另一个地方(从买家手里流入你的手里,从你的手里流入上游供货商手里),但是总量保持不变。

好,现在我们发现了一条关于金钱流通的定律,我们姑且称之为“金钱守恒定律”。

比如,一个运动小球撞击一个静止的小球,撞击前只有一个小球在运动,撞击后两个小球都在运动,但是原来小球的速度却变慢了。

想想这个过程,似乎是原来的小球拥有一部分“运动”,撞击之后它把一部分的“运动”分给了另一个小球,然后自己拥有的“运动”就变少了。再多撞几次,它的“运动”就越来越少,于是它就慢慢减速,直到最后停了下来。

发现没有,小球失去“运动”的过程,跟我们失去金钱的过程非常类似。

我手上有一笔钱,给这个分一点那个分一点,然后我的钱就越来越少,最后没钱了。小球有一笔“运动”,它给这个分一点,那个分一点,最后“运动”分完了它就不动了。

提到守恒就要比大小,几个量加起来等于另外几个量才叫守恒。

那问题的关键就是:金钱我知道如何衡量它的大小(直接用人民币的面额就行),那运动我用什么去衡量它的大小呢?

22

运动的能力

一个小球以一定的速度运动,那它具有的“运动的能力”是多大呢?分给另外的小球之后,它们拿走了多少,我自己又还剩下多少?很显然,这些账必须算清楚,否则没法玩。

但问题是,这种运动的能力跟小球的速度到底是什么关系?如果小球的速度变成了原来的2倍,那它“运动的能力”到底是变成了原来的2倍,还是4倍、8倍或者其它数字?

这种问题光靠脑袋是想不出来的,物理学是基于实验的科学,我们可以通过实验来寻找这种关系。

也就是说,如果速度变成了2倍,它具有的”运动的能力“就变成了原来的4倍;速度变成了3倍,后者就变成原来的9倍。

除了速度,物体具有的“运动的能力”显然还跟质量有关。同样的速度,一辆大卡车显然比一辆自行车具有更多“运动的能力”,前者明显能撞飞更多的东西。

同样的问题:它跟质量是什么关系?一个物体的质量变成了原来的2倍,它具有的“运动的能力”会变成原来的几倍呢?

同样的回答:去做实验,实验结果说什么,我们就听什么。最后,实验说物体具有的”运动的能力“跟质量成正比。

也就是说,质量变成2倍,”运动的能力“也变成2倍。

这也是很好理解的。因为质量变成了2倍,我就可以把它分成两个质量相等的小物体,这样每个小物体具有的“运动的能力”就...

Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.

THE END
0.一个物体从某一高度做自由落体运动.已知它在最后1s内的位移恰为它20.一个物体从某一高度做自由落体运动,已知它在最后1s内的位移恰为它在第1秒内位移的2倍,则它在开始下落时距地面的高度为( ) A.11.25mB.15mC.20mD.31.25m 试题答案 在线课程 分析自由落体运动是初速度为0的匀变速直线运动,由h=1212gt2求出第1s内的位移,结合题意求出最后1s内的位移,最后由运动学的公式即jvzq<84yyy422:5lkcpjcx3eqo5h|€q1ujoukhnfa4=76m5634749982;:839l:;3592g?j8:
1.专题02时间位移导学案2025第一秒末到第二秒初 B.第二秒初到第三秒初 C.第一秒内 D.第二秒内地 考点05位移、路程及其区别与联系30.(2025秋•太原期中)做直线运动的物体由A运动到B,下列说法正确的是( )A.x1是数轴上的一个点,表示初位移 B.x2是数轴上的一个点,表示末位移 C.物体由A运动到B,Δx=x2﹣x1为正,位移的jvzquC41yy}/|}m0eun1|thv1;5;<:8624ivvq
2.一个物体从静止开始做匀加速直线运动.它在第一秒内与在第二秒内得,1s内和2s内的位移之比为1:4,所以第一秒内和第二秒内的位移之比为1:3.根据速度位移公式v2=2ax得,v= 2ax,则走完第1m时与走完第2m时的速度之比为1: 2.故B正确,A、C、D错误.故选:B. 根据初速度为零的匀加速直线运动的位移公式x=12at2求出1s内和2s内的位移之比,从而求出第一秒内和第二秒jvzquC41yy}/|‚gcpi4dqv4swgyukxs1d4g7;9hd4f7b6=582;969?fhd;h2d;:40jznn
3.如图.做自由落体运动的小球.落地前最后一秒内的位移为25m(g取10m/分析:最后1s内的位移要由总位移减去1s前的总位移,根据自由落体运动位移时间公式求出运动时间,进而根据自由落体运动的基本公式求解. 解答:解:设下落的总时间为t,则 落地前最后一秒内的位移△h= 1 2 gt2- 1 2 g(t-1)2=25m 解得:t=3s 则该球释放的位置距离地面的高度h= jvzq<84yyy422:5lkcpjcx3eqo5h|€q1ujoukhnfa28f3nghhg759:57e2h3:=f2;f74c=gg:
4.一物体从某处由静止开始下落.在落地前最后2秒内通过的位移是100米(3)根据公式v=gt可得,v=10×6m/s=60m/s 答:(1)物体开始下落时离地的高度为180m;(2)物体落到地面所需的时间为6s;(3)物体落地时的速度为60m/s. 点评 本题考查了自由落体运动公式的基本运用,通过位移关系,结合最后2s内的位移,求出下落的时间是解决本题的关键.jvzq<84yyy422:5lkcpjcx3eqo5h|€q1ujoukhnfa;;cf@fegg69:m<4d67cc?<48g7e;A833
5.一个物体从某一高度做自由落体运动.已知它第一秒内的位移恰为它则最后一秒内的位移h2=2h1=10m; 则设下落总时间为t;最后1s内的位移h2= 1 2 gt2- 1 2 g(t-1)2=10m; 解得:t=1.5s; 则物体下落的总高度h= 1 2 gt2=11.25m; 落地时的速度v=gt=15m/s; 故答案为:11.25;15. 点评:解决自由落体运动的题目关键在于明确自由落体中的公式应用,一般情况下,研究由落点jvzq<84yyy422:5lkcpjcx3eqo5h|€q1ujoukhnfa:j2g?>c9e>d89g;54?4g:693f8fc@99e
6.2.2匀变速直线运动的速度与时间的关系教学设计2025若加速度变化,则单位时间内速度的变化量不同,无法用恒定概括整个过程。此外,直线运动保证了速度与加速度在同一直线上,避免矢量分解,使公式形式简化。因此,该关系仅适用于加速度大小和方向都不变的直线运动。新知巩固例题1一质点做匀加速直线运动的过程中,依次经过、、三点,通过段和段的时间相等,且段位移为段位移的jvzquC41o0€yzt3eqo5tqoy176=1:B840jznn
7.第2章匀变速直线运动章末综合提升名师导航2025(2)在物体由B点到C点的运动阶段,再应用匀变速直线运动速度公式,可得物体到达C点时的速度vC=vB+at2=26 m/s。(3)在物体由A点到B点的运动阶段,应用匀变速直线运动位移公式,可得AB间的距离sAB=vAt1+=28.5 m。[答案] (1)3 m/s2 (2)26 m/s (3)28.5 m巩固层提升层章末综合测评章末综合提升一语通关jvzquC41o0€yzt3eqo5tqoy176>4;A;60jznn