双小行星探测轨道动力学研究进展

双小行星探测轨道动力学研究进展

北京航空航天大学宇航学院, 北京 102206

中图分类号:V412.4+1

School of Astronautics, Beihang University, Beijing 102206, China

双小行星系统由在万有引力作用下彼此环绕的两颗小行星组成, 对研究太阳系起源、行星系统演化和行星防御都具有重要的价值, 近年来成为行星科学和航天动力学研究的热门对象, 对双小行星系统的原位探测也即将迎来热潮. 双小行星系统的独特构型和附近的复杂动力学环境为探测器轨道动力学和任务设计带来了全新的挑战, 为应对这些挑战所进行的研究也推动了轨道动力学基础理论的发展. 本文对双小行星探测轨道动力学的研究进展进行综述, 首先介绍了双小行星研究和探测的背景及意义, 简要阐述了双小行星系统形成理论及其附近轨道动力学的研究概况. 其次, 介绍了双小行星系统不规则引力场和相互引力势的建模方法, 进而展示了双星的姿态轨道耦合动力学, 即完全二体问题, 包括双星相对运动的平衡构型和稳定性. 接着, 介绍了描述双星附近探测器轨道运动的限制性完全三体问题的动力学模型, 以及该模型下的平动点、平动点周期轨道、大范围周期轨道、转移轨道和轨道维持等方面的研究进展. 第四部分综述了环绕双小行星系统单颗星的受摄二体问题, 以轨道摄动理论和行星系统中受摄二体问题的研究现状为背景, 介绍了环绕双小行星系统主星的半解析轨道动力学建模与轨道稳定性分析. 之后, 介绍了目前面向探测任务需求和考虑实际约束的轨道动力学研究和轨道设计. 最后, 基于目前研究进展, 分析了面临的若干问题, 对未来双小行星探测轨道动力学及相关技术的发展进行了讨论和展望.

The binary asteroid systems, consisting of two asteroids orbiting each other through the mutual gravitation, are of great significance for studying the origin of our solar system and the evolution of planetary systems, as well as for the planetary defense. Therefore, binary asteroid systems have become a hot research topic of the planetary science and astrodynamics, and several in situ exploration missions will be launched in the near future. The unique configurations and complex dynamical environments of binary asteroid systems have brought about new challenges for orbital dynamics and the mission design. The studies devoted to the new challenges have greatly promoted the development of basic theories of orbital mechanics. In this paper, we review and summarize the research progress on orbital dynamics about the binary asteroid system exploration. We first introduce the background and significance of the binary asteroid system exploration, and briefly review the formation theory and the research status of orbital dynamics about binary asteroid systems. Secondly, the modeling methods for the irregular gravity field and the mutual gravitational potential of binary asteroid systems are introduced. The coupled orbit-attitude motion of two members of the binary system, i.e., the full two-body problem, including the equilibrium configurations and their stability, is also discussed. Thirdly, the concept and applications of the restricted full three-body problem about binary asteroid systems are introduced, including the libration points and associated periodic orbits, general periodic orbits, transfer orbits, and station-keeping strategies. In the fourth part, the secular orbital evolution around one member of a binary asteroid system is focused from viewpoint of the perturbed two-body problem. The perturbation theory and applications in planetary systems are illustrated first, and then some recent research on the semi-analytical orbital model and stability analysis around the primary of a binary asteroid system is presented. Fifthly, the orbital dynamics analyses and the mission design for near future exploration missions, considering mission objectives and practical constraints, are summarized. Finally, based on the current research progress, challenges and prospects of orbital dynamics and related technologies about the binary asteroid system exploration are discussed.

图 1本文结构安排及各部分之间的关系

Figure 1.Organization of this paper and connections between different parts

图 5小行星433 Eros多面体模型

Figure 5.The polyhedron model of the asteroid 433 Eros

图 7两刚体相互引力势的几何构型

Figure 7.Geometrical representation of mutual gravitational interaction

图 10航天器(质点)在双小行星系统附近的轨道运动

Figure 10.A massless particle moving in the gravity field of a binary asteroid system

图 23系统在参数空间$(\kappa ,h_z^2)$中的分岔

Figure 23.Bifurcation lines in the parameter space$(\kappa ,h_z^2)$

图 26层级三体问题中的内问题与外问题

Figure 26.The inner and outer problem in the hierarchy three-body system

图 30J2摄动的层级椭圆型限制性三体问题下的轨道翻转

Figure 30.Orbit flip in the hierarchical elliptical restricted three-body problem with the J2 perturbation

图 33Hera探测器的双曲线飞掠轨迹设计

Figure 33.The hyperbolic fly-by trajectories design of Hera mission

Pravec P, Harris AW. Binary asteroid population: 1. Angular momentum content. Icarus, 2007, 190(1): 250-259

Bottke WF, Vokrouhlický D, Rubincam DP, et al. The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids//Bottke WF, Cellino A, Paolicchi P, et al. Asteroids III. Tucson: University of Arizona Press, 2002: 395-408

Scheeres DJ. Stability of the planar full 2-body problem. Celestial Mechanics and Dynamical Astronomy, 2009, 104(1): 103-128

Margot JL, Pravec P, Taylor P, et al. Asteroid systems: Binaries, triples, and pairs//Michel P, DeMeo FE, Bottke WF. Asteroids IV. Tucson: University of Arizona Press, 2015: 355-373

Yu Y. Orbital Dynamics in the Gravitational Field of Small Bodies. Berlin, Heidelberg: Springer, 2016

Scheeres DJ. Stability in the full two-body problem//Celletti A, Ferraz-Mello S, Henrard J. Modern Celestial Mechanics: From Theory to Applications. Dordrecht: Springer, 2002: 155-169

杜燕茹, 李翔宇, 韩宏伟. 双体小行星系统平衡态与稳定性研究. 深空探测学报, 2019, 6(5): 456-462 (Du Yangru, Li Xiangyu, Han Hongwei, et al. Study on equilibrium and stability of binary asteroid systems. Journal of Deep Space Exploration, 2019, 6(5): 456-462 (in Chinese)

Bellerose J, Scheeres DJ. Periodic orbits in the vicinity of the equilateral points of the restricted full three-body problem//Advances in the Astronautical Sciences. Lake Tahoe, California, 2006, 123I: 747-770

Bellerose J. The restricted full three body problem: Applications to binary asteroid exploration. [PhD Thesis]. Michigan: The University of Michigan, 2008

Shi Y, Wang Y, Xu SJ. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example. Celestial Mechanics and Dynamical Astronomy, 2018, 130(4): 1-26

Jean I, Misra AK, Ng A, et al. Orbital dynamics of a spacecraft in the vicinity of a binary asteroid system: Impact of solar radiation pressure on orbital motion//2018 Space Flight Mechanics Meeting, Kissimmee, 2018

McInnes CR. Solar Sailing: Technology, Dynamics and Mission Applications. Berlin, Heidelberg: Springer, 2004

Tsiganis K, Kueppers M, Michel P, et al. Hera—The European contribution to the international AIDA mission to Didymos//European Geoscience Union General Assembly, Vienna, Ausria, 2019

Scheeres DJ, McMahon JW, Bierhaus EB, et al. Janus: A NASA SIMPLEx mission to explore two NEO binary asteroids//52nd Lunar and Planetary Science Conference, 2021

Yu Y, Michel P, Schwartz SR, et al. Ejecta cloud from the AIDA space project kinetic impact on the secondary of a binary asteroid: I Mechanical environment and dynamical model. Icarus, 2017, 282: 313-325

Werner RA, Scheeres DJ. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celestial Mechanics and Dynamical Astronomy, 1997, 65(3): 313-344

Werner RA. Evaluating descent and ascent trajectories near non-spherical bodies. NASA Tech Briefs NPO-46697, Jet Propulsion Laboratory, Pasadena, California, 2010

Takahashi Y, Scheeres DJ. Spherical harmonic potentials within the Brillouin sphere//AIAA/AAS Astrodynamics Specialist Conference, San Diego, California, 2014

Takahashi Y, Scheeres DJ. Gravity field characterization around small bodies. [PhD Thesis]. Boulder: University of Colorado at Boulder, 2013

Scheeres DJ. Orbital Motion in Strongly Perturbed Environments. Berlin, Heidelberg: Springer, 2012

Chermnykh SV. Stability of libration points in a gravitational field. Vestn. Leningr. Univ. 1987, 2(8): 73-77

Kirpichnikov SN, Kokoriev AA. On the stability of stationary collinear Lagrangian motions in the system of two attracting bodies: an axisymmetrical, peer-like and spherically symmetric. Vest Leningrad University, 1988, 3(1): 72-84

Kokoriev AA, Kirpichnikov SN. On the stability of stationary triangular Lagrangian motions in the system of two attracting bodies: an axisymmetrical, peer-like and spherically symmetric. Vest Leningrad University, 1988, 1(1): 75-84

Lan L, Yang HW, Baoyin HX, et al. Retrograde near-circular periodic orbits near equatorial planes of small irregular bodies. Astrophysics and Space Science, 2017, 362(9): 1-13

李旭, 钱霙婧, 杨晓东等. 基于偶极子模型的双小行星系统平衡点特性研究. 工程力学, 2021, 38(12): 232-248 (Li Xu, Qian Yingjing, Yang Xiaodong, et al. Study on equalibrium points chacteristics of binary asteroid systems based on the mass dipole model. Engineering Mechanics, 2021, 38(12): 232-248 (in Chinese)

Giacaglia GEO, Jefferys WH. Motion of a space station. I. Celestial Mechanics, 1971, 4(3): 442-467

Paul MK. An expansion in power series of mutual potential for gravitating bodies with finite sizes. Celestial Mechanics, 1988, 44(1): 49-59

Compère A, Lemaitre A. The two-body interaction potential in the STF tensor formalism: an application to binary asteroids. Celestial Mechanics and Dynamical Astronomy, 2014, 119(3): 313-330

Hou XY. Integration of the full two-body problem by using generalized inertia integrals. Astrophysics and Space Science, 2018, 363(2): 1-5

Jiang Y, Baoyin HX, Yang M. Dynamical model of binary asteroid systems using binary octahedrons. Journal of Astrophysics and Astronomy, 2018, 39(5): 1-9

Yu Y, Cheng B, Hayabayashi M, et al. A finite element method for computational full two-body problem: I. The mutual potential and derivatives over bilinear tetrahedron elements. Celestial Mechanics and Dynamical Astronomy, 2019, 131(11): 1-21

Wang Y, Shi Y, Xu SJ. Dynamical modeling of coupled orbit-attitude motion of a rigid body in the gravity of an asteroid considered as a polyhedron//The 27th International Symposium on Space Flight Dynamics (ISSFD), Melbourne, Australia, 2019

Gabern F, Koon WS, Marsden JE. Spacecraft dynamics near a binary asteroid. Discrete and Continuous Dynamical Systems, 2005, Supplement: 297-306

Woo P, Misra AK. Equilibrium points in the full three-body problem. Acta Astronautica, 2014, 99(1): 158-165

Szebehely V. Theory of Orbit: The Restricted Problem of Three Bodies. New York and London: Academic Press, 1967

Hénon M. Vertical stability of periodic orbits in the restricted problem. I. Equal masses. Astronomy and Astrophysics, 1973, 28: 415-426

Hénon M. Vertical stability of periodic orbits in the restricted problem II. Hill’s case. Astronomy and Astrophysics, 1974, 30: 317-321

Hou XY, Xin XS, Tang JS, et al. Dynamics around libration points in the binary asteroid system//Proceedings of the 25th International Symposium on Space Flight Dynamics, 2015

Broucke RA. Periodic orbits in the restricted three-body problem with Earth-Moon masses. JPL Technical Report, 1968

Capannolo A, Milano P, Ferrari F, et al. Optimal configurations for nanosatellite formation flying in binary asteroid environment//26th International Symposium on Space Flight Dynamics, Matsuyama, 2017

杨雅迪, 陈奇, 李翔宇等. 同步双小行星系统共振轨道设计. 宇航学报, 2019, 40(9): 987-995 (Yang Yadi, Chen Qi, Li Xiangyu, et al. Design of resonant orbit in synchronized binary asteroid system. Journal of Astronautics, 2019, 40(9): 987-995 (in Chinese)

Chappaz L, Howell K. Bounded orbits near binary systems comprised of small irregular bodies//AIAA/AAS Astrodynamics Specialist Conference, San Diego California, 2014

Vallado DA. Fundamentals of Astrodynamics and Applications. EI Segundo: Microcosm Press, 2001

Gutzwiller MC, Schmidt DS. The motion of the Moon as computed by the method of Hill, Brown, and Eckert. US Government Printing Office, 1986

刘林, 汤靖师. 卫星轨道理论与应用. 北京: 电子工业出版社, 2015

Liu Lin, Tang Jingshi. Satellite Orbit Theory and Application. Beijing: Publishing House of Electronics Industry, 2015 (in Chinese)

Kozai Y. Secular perturbations of asteroids with high inclination and eccentricity. The Astronomical Journal, 1962, 67(9): 591-598

Kozai Y. The motion of a close Earth satellite. The Astronomical Journal, 1959, 13(1): 104-116

Murray CD, Dermott SF. Solar System Dynamics. Cambridge: Cambridge University Press, 2000

Bogoliubov N, Mitropolsky Y. Asymptotic Methods in the Theory of Non-linear Oscillations. New York, London, Paris, Montreux, and Tokyo: Gordon and Breach, 1961

Allan RR, Cook GE. The long-period motion of the plane of a distant circular orbit//Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1963, 280: 1380

Circi C, Condoleo E, Ortore E. A vectorial approach to determine frozen orbital conditions. Celestial Mechanics and Dynamical Astronomy, 2017, 128(2): 361-382

Garfinkel B. On the motion of a satellite in the vicinity of the critical inclination. The Astronomical Journal, 1960, 65(1): 624

Jupp AH. The critical inclination problem—30 years of progress. Celestial Mechanics, 1987, 43(1): 127-138

Lidov ML. On the approximated analysis of the orbit evolution of artificial satellites. in: Roy M. Dynamics of Satellites. Berlin, Heidelberg: Springer, 1963: 168-179

Harrington RS. Dynamical evolution of triple stars. The Astronomical Journal, 1968, 73(3): 190

Lithwick Y, Naoz S. The eccentric Kozai mechanism for a test particle. Astrophysical Journal, 2011, 742(2): 2-9

Ziglin SL. Secular evolution of the orbit of a planet in a binary-star system. Soviet Astronomy Letters, 1975, 1(5): 45-47

Capannolo A, Pesce V, Lavagna M. Binary asteroid redirection: Science opportunity for nanosats//Proceedings of the International Astronautical Congress (IAC), 2018

Gil-Fernandez J, Casasco M, Carnelli I, et al. HERA autonomous guidance, navigation and control experiments: Enabling Better asteroid science & future missions//8th European Conference for Aeronautics and Space Sciences (EUCASS), Madrid, Spain, 2019

Tardivel S, Michel P, Scheeres DJ. Deployment of a lander on the binary asteroid (175706) 1996 FG3, potential target of the european MarcoPolo-R sample return mission. Acta Astronautica, 2013, 89(2013): 60-70

Wu XY, Shang HB, Qin X. Transfer trajectory design about doubly synchronous binary asteroid system//54th AIAA Aerospace Sciences Meeting, 2016

图(34)

返回顶部

Organization of this paper and connections between different parts

The polyhedron model of the asteroid 433 Eros

Geometrical representation of mutual gravitational interaction

A massless particle moving in the gravity field of a binary asteroid system

Bifurcation lines in the parameter space$(\kappa ,h_z^2)$

The inner and outer problem in the hierarchy three-body system

Orbit flip in the hierarchical elliptical restricted three-body problem with the J2 perturbation

The hyperbolic fly-by trajectories design of Hera mission

THE END
0.《理论力学》PPT课件.ppt共线,作用在相互作用的两个物体上. 在画物体受力图时要注意此公理的应用. 注意:平衡力和作用与反作用力的区别 公理5 刚化原理 柔性体(受拉力平衡) 刚化为刚体(仍平衡) 反之不一定成立. 刚体(受压平衡) 柔性体(受压不能平衡) 变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变.jvzquC41oc~/dxtm33>/exr1jvsm1;5431712:4:32;15>6542652:70ujzn
1.石油工程学院2021年研究生招生考试大纲5.钻柱:钻柱的组成、作用、工作状态、受力分析及强度设计等。 6.钻井参数优化设计:影响钻进速度的主要因素,井内液流流动特性与井内压力平衡问题钻井液水力能量传输、射流水力学、环空水力学、井内波动压力、井内各种压力平衡,喷射钻井,钻井参数优选。 jvzquC41yy}/e~u0gf{/ew4qkn5sey~1{lyq{8uzz5dfAj35;<55@f624=94k<;8g>8d@ie4ci/j}r