研究前沿

基因毒性杂质(genotoxic impurity,GTI)是指药物中能直接或间接导致DNA受损引起基因突变,并具有致癌性或者潜在致癌可能性的一类杂质。由于其较一般杂质具有微量水平就存在潜在致突变性和致癌性风险的特点,受到药品监管机构和制药企业重点关注和严格控制。

2002年欧洲药物管理局(EMA)最先出台了关于基因毒性杂质的管理法规,美国食品药物管理局(FDA)、国际人用药品注册技术要求国际协调会(ICH)等组织也针对基因毒性杂质先后颁发了相关界定、分类、限度、检测和风险评估程序等一系列指南,目前已经成为药品获批及上市的关键指标之一。

基因毒性警示结构所谓警示结构单元是指一些具有与遗传物质发生化学反应能力的特殊结构单元,会诱导基因突变或者导致染色体重排或断裂,从而具有潜在的致癌风险。警示结构单元是遗传毒性杂质识别的起点。具有警示结构单元,但并未经实验测试模型验证的杂质叫做潜在遗传毒性杂质。常见警示结构单元如图1:

图1 常见警示结构单元

可以发现,以上结构单元大部分都含有氨氮结构,其中亚硝胺类就是比较常见的一种基因毒杂质。自2018年7月在缬沙坦原料药中检出N-亚硝基二甲胺(NDMA)以来,陆续在其他沙坦类原料药中检出了各类亚硝胺杂质,如NDMA、N-亚硝基二乙胺(NDEA)等。进一步的调查发现,在个别供应商的非沙坦类的药物中(如雷尼替丁),亦有亚硝胺类杂质的检出。亚硝胺类杂质属于ICH M7(R1)(《评估和控制药物中DNA反应性(致突变)杂质以限制潜在致癌风险》)指南[1]中提及的“关注队列”物质。根据世界卫生组织公布的致癌物清单[2],NDMA和NDEA均属于2A类致癌物质;根据国际认可数据库,已有部分亚硝胺类杂质有公开的致癌性数据,如NDMA、NDEA、N-亚硝基-N-甲基-4-氨基丁酸(NMBA)、N-亚硝基二丁胺(NDBA)等。

随着对亚硝胺类杂质的日益关注,美国药典(USP)也在不断更新亚硝胺药物分析杂质,目前总计达到49种,简单亚硝胺和NDSRIs的杂质清单还在持续丰富中。为了保证药品的安全和质量可控,实现有效的风险控制,提供更加可靠的数据支持[3]。

亚硝胺类杂质来源

根据目前所知,亚硝胺类杂质有多种产生原因[4],如工艺产生、降解途径和污染引入等。具体来讲,亚硝胺类杂质可能通过以下途径引入[5]:(一)由工艺引入亚硝胺类杂质的风险

以沙坦类药物的合成为例,四唑的环化是由有机腈与叠氮化钠的环加成反应在高沸点溶剂(如二甲基甲酰胺或者N-甲基吡咯烷酮)中实现的,反应结束后,过量的叠氮化钠用亚硝酸钠淬灭。然而在这个过程中使用的二甲基甲酰胺和N-甲基吡咯烷酮中分别含有二甲胺和4-甲氨基丁酸杂质(这些杂质即可能是这些溶剂的合成原料,也可能是溶剂分子降解的产物)。这些仲胺在叠氮化钠的淬灭反应中与淬灭剂亚硝酸钠作用,产生了相应的亚硝胺NDMA (二甲基亚硝胺) 和NMBA (N-亚硝基-N-甲基-4-氨基丁酸)。这个过程是沙坦类药物产生亚硝胺杂质的根本原因(图2)。尤其是考虑到叠氮化钠淬灭是整个沙坦合成工艺的最后一步,产生的亚硝胺杂质污染最终产品的可能性大大增加。

图2 沙坦类药物可能引入亚硝胺类杂质过程示例

(二)由污染引入的风险

原料药生产过程中使用了被亚硝胺类杂质污染的物料(起始物料、中间体、溶剂、试剂、催化剂等)可能带来亚硝胺类杂质的风险。

使用回收的物料亦有引入亚硝胺类杂质的风险。已发现的回收物料被亚硝胺污染的实例包括邻二甲苯、氯化三丁基锡(用作叠氮化三丁基锡的来源)、N,N-二甲基甲酰胺(DMF)。

(三)降解产生风险

某些药物本身会降解产生亚硝胺类杂质,如雷尼替丁在高温下会产生亚硝胺类杂质[6];氨基比林中二甲氨基自身水解也会生成二甲基亚硝胺(图3)。

图3 氨基比林降解导致二甲基亚硝胺形成的机理

(四)制剂过程中形成

2019年9月,一份新的二甲基亚硝胺和二乙基亚硝胺产生机理报告被递交到了监管部门。该报告提出,NDMA/NDEA似乎是在盖箔印刷过程中形成的,N-亚硝胺的形成是由盖箔中的硝化纤维素与含胺印刷油墨(二甲胺和二乙胺)反应引起的,并通过汽化和冷凝热封起泡过程转移到在成品上。由于增塑硝化纤维碎片的爆燃温度,在热诱导分解时会产生不同的氮氧化物。从硝酸纤维素中释放出氮氧化物以及随后在印刷药物油墨中对胺进行亚硝化被认为是合理的。

l  从整体上评估原料药合成路线,规避亚硝胺类在反应中产生,或将可能性降到最低;

l  对原材料和中间供应商进行评估和审计,如果发现亚硝胺杂质的风险,应使用高灵敏度且经过验证的方法进行确认;

l  如果检测到亚硝胺类物质,应进行根本原因分析,必要时变更生产工艺,以防止/减少亚硝胺类物质的生成;

l  如实向FDA报告进行变更的内容

亚硝胺类基因毒杂质控制策略

(一)基本控制理念

由于亚硝胺类杂质在人体中可接受限度较小,微量杂质的检测和控制难度大。因此对于亚硝胺类杂质的控制应采取避免为主,控制为辅的策略。

1)避免为主是指在药品的研发阶段应根据亚硝胺类杂质产生的原因从原料药工艺路线的选择、物料的选择与质控、工艺条件的优化等方面尽量避免亚硝胺类杂质的产生,并在生产过程中严格执行各操作规范。药品上市许可持有人/药品生产企业应与各物料(原料药应包括起始物料、溶剂、试剂、催化剂、中间体等,制剂应包括原料药、辅料、包材等等)生产商充分沟通,对物料生产和回收工艺进行系统评估。

若评估发现有生成亚硝胺类杂质的风险,应首先分析亚硝酸盐或者可能形成亚硝胺类杂质的相关试剂和溶剂在工艺中使用的必要性,尽量避免选择可能生成亚硝胺类杂质的生产工艺[6]。

2)控制为辅的策略是指当评估药品具有亚硝胺类杂质残留风险且相关工艺无法避免时,应尽可能将该步骤调整至工艺的早期,利用后续多步骤的操作降低亚硝胺类杂质残留风险。同时须根据工艺路线分析可能生成的亚硝胺结构,并优化工艺,制定详细的过程控制策略,保证生产过程中此类杂质的有效去除。

由降解产生亚硝胺类杂质的情况,应分析降解产生的条件,通过优化生产工艺、处方、贮存条件等,降低降解杂质的产生风险。

(二)限度控制

药物中亚硝胺类杂质的控制策略建议参考ICH M7(R1)指南的相关规定,应保证最终拟定的控制策略和杂质限度具有充分合理的科学依据。亚硝胺类杂质的致癌风险较高,不适合按照ICH M7(R1)提出的1.5μg/天的毒理学关注阈值(TTC)控制限度。

1)应使用来自研究设计完善的致癌性试验中的最低TD50值,或与人类风险评估最相关的种属、性别和肿瘤发生器官部位的最低TD50值来计算可接受摄入量,设定对应肿瘤发生风险为十万分之一,人体体重统一按50kg计算,则该亚硝胺类杂质的每日可接受摄入量(Acceptable Intake,AI)为:TD50(mg/kg/天)×50kg/50000。

2)未能在权威机构数据库中查询到TD50值时,可选用以下几种方法分别获得该亚硝胺类杂质的控制限度,并建议取其中最小值:

A.可以参考国际权威机构,如WHO、国际化学品安全性方案(International Programme on Chemical Safety,IPCS)等公布的数据或建立的风险评估方法。

B.与已有TD50值的亚硝胺类杂质结构相似,可以导用其TD50值计算杂质限度。

(三)检测方法的建立

药物中亚硝胺类杂质的分析测试方法,可以参考权威机构发布的方法,亦可自行开发方法,均需注意分析方法灵敏度应与所论证的杂质限度相匹配,并采用杂质对照品进行完整的方法学验证,保证亚硝胺类杂质能够准确有效的检出。若采用自行开发方法,需证明该方法等效于或者更优于同品种官方公布的方法。

(四)全生命周期的风险控制

对于申报上市的产品,申请人在研发中,应进行亚硝胺类杂质的风险评估,对明确有亚硝胺类杂质潜在风险的品种应进行充分的研究,在申报资料的相应章节提交亚硝胺类杂质的研究资料及检测结果,同时应注意用于研究的样品的批次、批量必须具有代表性以及科学依据。

对于已上市药品,药品上市许可持有人/药品生产企业也应主动对于亚硝胺类杂质存在的风险进行评估,若存在潜在的亚硝胺类杂质产生风险,可参照本指导原则以及其他相关指导原则的要求进行研究,根据研究结果采取相应的措施,以防止或最小化患者亚硝胺类杂质的暴露。

我们的优势

1.  拥有国际化分析实验室网络的领导者(遍及美国,欧洲,亚洲)

2.  拥有国内先进的cGMP合规服务实验室,进行方法学验证,适用于各种药物制剂及原辅料的检测,满足美国市场、欧洲市场注册申报的要求

3.  拥有国内先进的分析设备,如Q-TOF-MS,GC-MS/FID,LC-MS/MS等,能够根据客户要求,开发足够灵敏的基因毒杂质的分析方法

4. 拥有经验丰富的科研人员,能够对亚硝胺类(NDMA/NDEA/NMDA/NTTP)、苯磺酸酯类、卤代烃类、硫酸二甲酯、硫酸二乙酯等各类基因毒杂质进行分析方法的开发、验证和测试工作

目前SGS已完成的亚硝胺杂质展示如下(表1)。最近热度较高的西格列汀二甲双胍缓释片中的NTTP亚硝胺杂质的测试,也能够按照比较成熟的方案,进行方法的开发、验证和测试。

表1  N-亚硝胺基因毒杂质能力展示

No.

中文名

英文缩写

CAS No.

仪器

N-亚硝基二甲基胺

NDMA

62-75-9

LCMSMS

N-亚硝基二乙基胺

NDEA

55-18-5

LCMSMS

N-亚硝基二丁基胺

NDBA

924-16-3

LCMSMS

N-亚硝基二丙基胺

NDPA

621-64-7

LCMSMS

二异丁基亚硝胺

NDiBA

997-95-5

LCMSMS

N-亚硝基哌啶

NPIP

100-75-4

LCMSMS

N-亚硝基吡咯烷

NPYR

930-55-2

LCMSMS

N-亚硝基吗啉

NMOR

59-89-2

LCMSMS

N-亚硝基-N-乙基苯胺

NEPhA

612-64-6

LCMSMS

10

N-亚硝基-N-甲基苯胺

NMPhA

614-00-6

LCMSMS

11

N,N-双(3,5,5-三甲基己基)亚硝基酰胺

NDiNA

LCMSMS

12

N-亚硝基二苄胺

NDBzA

LCMSMS

13

N-亚硝基二异丙胺

NDIPA

601-77-4

LCMSMS

14

N-亚硝基甲基乙基胺

NEMA/NMEA

LCMSMS

15

N-甲基-N-(3-羧丙基)亚硝胺

NMBA

LCMSMS

16

乙基异丙基亚硝胺

NEIPA

LCMSMS

17

N-亚硝基二苯基胺

NDPhA

86-30-6

GCMS

18

N-甲基-N‘-亚硝基哌嗪

MNP

LCMSMS

参考文献

4. (a) Assessment report, 14 February 2019, EMA/217823/2019. (b)A Screening Procedure for the Formation of Nitroso Derivatives and Mutagens by Drug-Nitrite Interaction, Chem. Pharm. Bull. 1982, 30(9), 3399-3404. (c) Formation of N-Nitrosodimethylamine (NDMA) from Dimethylamine during Chlorination, Environ. Sci. Technol. 2002, 36, 588-595. (d) N-nitrosomethylanlaniline, Org. Synth. 1933, 13, 82. (e) Nitrosomethylurea. Org. Synth. 1935, 15, 48.

5. (a) Information on nitrosamines for marketing authorisation holders,EMA/189634/2019. (b) Questions and answers on “Information on nitrosamines for marketing authorisation holders”,EMA/CHMP/428592/2019 Rev.1

7. Inhibition of Nitrosamine Formation by Inorganic and Organic Salts, Chem Pharm Bull, 1986, 34(8), 3485-3487.

THE END
0.第二章基因组的结构与功能自测题5. 断裂基因(split gene) 6. 假基因(pseudogene) 7. 单顺反子RNA(monocistronic RNA) 8. 多顺反子RNA(polycistronic RNA) 9. 卫星DNA(satellite DNA) 10. 单拷贝序列(single copy sequence) (三)简答题 1.原核生物染色体中结构基因的特点是什么? 2.简述质粒的基本jvzquC41yy}/5?5fqe4dp8ftvkimg85a49627<<540nuou
1.核酸分子杂交技术DNA杂交生物在线Labon(1)单拷贝顺序(single copy sequence):在整个DNA分子中只出现一次或少数几次,主要是编码蛋白质的结构基因。除组蛋白、角蛋白和肌动蛋白以外,几乎所有的蛋白质基因都是单拷贝顺序,平均为1000碱基对。单拷贝基因在整个基因组织中所占比例最高。在人的细胞中约占DNA含量的一半。 jvzquC41yy}/drtqp0ipo7hp1fud1|mqycxuklqg0cyqAwjyukj>3@;
2.分子生物学辅导笔记生物医学笔记•真核基因的断裂结构 基因家族(gene family) 指核苷酸序列或编码产物的结构具有一定程度同源性的一组基因。 假基因(pseudogene) 在多基因家族中有的成员并不能表达出有功能的产物。 •1、核酸序列相同:即为多拷贝基因如rRNA基因家族,tRNA基因家族,组蛋白基因家族。 •2、核酸序列高度同源:如人类生长激素基因jvzq<84yyy4gtnjmcqbp7hqo1tpvn4ujgthorsi14627856/3903=7:;2<47B73:;890|mvon
3.分子生物学简答题细菌所包含的重组DNA分子可能为不同的染色体DNA片段,这样全部转化细菌所携带的各种染色体片段就代表了染色体的整个基因组。存在于转 化细菌内、由克隆载体所携带的各种染色体片段就代表了染色体的整个基因组。7.简述RNA的分类,各类RNA的结构特点及其在蛋白质生物 合成中的作用?(1)mRNA,5’端有帽子结构m7Gppp;3’端有pojvzq<84yyy4489iqe0ipo8hqpvkov8741282886;19>75A=;7a713@;::9960|mvon
4.分子生物学第二章da结构与功能.ppt●基因组DNA与蛋白质结合形成染色体,储存于细胞核内,体细胞内的基因的基因组是双份的(即双倍体,diploid),即有两份同源的基因组。 ●单顺反子:一个结构基因经过转录和翻译生成一个mRNA分子和一条多肽链。 ●基因不连续性 断裂基因(interrupted gene)、内含子(intron)、外显子(exon) ●非编码区较多 多于编码jvzquC41oc~/dxtm33>/exr1jvsm1;53:1733A4734:46:5622625=60ujzn
5.杂质中出现这几类结构,警惕遗传毒性!点击上方的行舟Drug▲添遗传毒性杂质在很低的浓度下即可诱导基因突变以及染色体的断裂和重排,因而具有潜在的致癌性。在缺乏杂质安全性数据支持的情况下,在EMA,FDA以及ICH发布的指导原则中均将警示结构作为区分普通杂质和潜在遗传毒性杂质的主要标志。本文就警示结构的起源、发展和识别进行简要论述。 jvzquC41zwkrk~3eqo555B;36974;87345?:8?;
6.XRCC1转化医学网基因结构 XRCC1基因全称X-ray repair complementing defective repair in Chinese hamster cells 1,人类X射线交错互补修复基因1,位于第19号染色体19q13.2位置。XRCC1基因全长32.3kb,共有17个外显子,mRNA全长2,087nt,编码634个氨基酸残基组成的蛋白。 基因分子生物学功能 jvzquC41yy}/5?5|j{~/exr1jqsf/{jugcxdj6npfg~.tri/844tj}rn
7.高通量测序领域常用名词解释reads水平contig外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。 mRNA测序 (RNA-seq) jvzquC41dnuh0lxfp0tfv8Iqtky`zr}k1cxuklqg1fkucrqu1:7:9>;:9
8.二染色体的结构异常《医学遗传学基础》许多物理、化学和生物因子可以引起染色体断裂(breakage),这些因子称为致断因子(clastogenic factor)或染色体断裂剂。此外,染色体也能自发断裂。断裂端被认为具有“粘性”,即易与其它断端接合或重连(reunion)。因此,一次断裂产生的两个粘性末端通常重连而修复如初。但有时出现非正常的重连,结果导致多种染色体结构异常。 jvzquC41yy}/|‚xl0eun0ls1nkrvp|mwlk5zkzg{kiiwjszwgpjeqz136853=3jvor