高考数学常用公式汇总一、函数1、 若集合A 中有n )(N n ∈个元素,则集合A 的所有不同的子集个数为n 2,所有非空真子集的个数是22-n 。
注:减一个真子集,减一个空集二次函数c bx ax y ++=2的图象的对称轴方程是a bx 2-=,顶点坐标是⎪⎪⎭⎫ ⎝⎛--a b ac ab 4422, 二、 三角函数3、诱导公式可用十个字概括为:奇变偶不变,符号看象限。
(正负看原来的三角比)函数Bx A y ++=)sin(ϕω),(其中00>>ωA 的最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是Tf 1=,相位是ϕω+x ,初相是ϕ; 13、在△ABC 中:-tanC B)+tan(A -cosC B)+cos(A sinC =B)+sin(A ==三、数列1、等差数列的通项公式是d n a a n )1(1-+=, 2)(1n n a a n S +=2、等比数列的通项公式是11-=n n q a a ,前n 项和公式是:⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn3、若m 、n 、p 、q ∈N ,且q p n m +=+,那么: 当数列{}n a 是等差数列时,有q p n m a a a a +=+; 当数列{}n a 是等比数列时,有q p n m a a a a ⋅=⋅。
四、 排列组合1、 加法原理、乘法原理各适用于什么情形?有什么特点? 加法分类,类类加;乘法分步,步步乘。
2、排列数公式是:m n A =)1()1(+--m n n n =!!)(m n n -;组合数公式是:m n C =!m A mn 组合数性质:mn C =mn nC - m n C +1-m n C =mn C 1+五、解析几何1、 A B x x AB -=2、 数轴上两点间距离公式:A B x x AB -=3、 直角坐标平面内的两点间距离公式:22122121)()(y y x x P P -+-=4、 若点P 分有向线段21P P 成定比λ,则λ=21PP PP 5、 若点),(),(),(222111y x P y x P y x P ,,,点P 分有向线段21P P 成定比λ,则: =λλ++121x x =λλ++121y y若),(),(),(332211y x C y x B y x A ,,,则△ABC的重心G的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,。
【高考复习】高考理科必背数学公式大全高中数学公式是高考数学复习的重要知识点高三考生行为高考一一元二次方程的解-b+√(b2-4ac)/2a-b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/ax1*x2=c/a注:韦达定理判别式b2-4a=0注:方程有两个相等的实根b2-4ac>0注:方程有两个不相等的个实根B2-4ac<0注:方程有共轭复数根1三维图形和平面图形的公式圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆x2+Y2+DX+ey+F=0的一般方程注:D2+e2-4f>0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱镜侧面积s=C*h斜棱镜侧面积s=C'*h正棱锥侧面积s=1/2c*h'正棱台侧面积s=1/2(c+c')h'圆桌的侧面面积s=1/2(c+c’)l=pi(R+R)l球的表面积s=4Pi*R2圆柱侧面积s=c*h=2pi*h圆锥侧面积s=1/2*c*l=pi*r*l弧长公式L=a*RA是圆中心角的弧度数,R>0,扇形面积公式s=1/2*L*R 锥体体积公式v=1/3*s*h圆锥体体积公式v=1/3*pi*r2h倾斜棱镜的体积v=s'L注:其中s'是直截面的面积,L是侧边的长度柱体体积公式v=s*h圆柱体v=pi*r2h一图形周长、面积、体积公式矩形的周长=(长+宽)×2正方形的周长=边长×4矩形面积=长度×宽度正方形的面积=边长×边长三角形面积已知三角形底a,高h,则s=ah/2如果三角形有三条边a、B、C和半周长P,那么s=√ [P(P-A)(P-B)(P-C)](海伦公式)(P=(A+B+C)/2)和:(a+b+c)*(a+b-c)*1/4如果我们知道三角形两边的a和B,以及这两条边之间的角c,那么s=absinc/2设三角形三边分别为a、b、c,内切圆半径为r然后三角形面积=(a+B+C)R/2设三角形三边分别为a、b、c,外接圆半径为r然后三角形面积=ABC/4R。
高考数学必背知识点及公式归纳总结大全高考数学必背知识点及公式归纳总结大全高中数学理科是10本书,其中的数学公式非常多,那么关于高考数学的公式及知识点有哪些呢?以下是小编准备的一些高考数学必背知识点及公式归纳总结,仅供参考。
高考数学必考知识点归纳必修一:1、集合与函数的概念(部分知识抽象,较难理解);2、基本的初等函数(指数函数、对数函数);3、函数的性质及应用(比较抽象,较难理解)。
必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角。
这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。
这部分知识高考占22---27分。
2、直线方程:高考时不单独命题,易和圆锥曲线结合命题。
3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空);2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分。
必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查。
2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。
09年理科占到5分,文科占到13分。
必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右;2、数列:高考必考,17---22分;3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。
高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。
文科:选修1—1、1—2。
选修1--1:重点:高考占30分。
1、逻辑用语:一般不考,若考也是和集合放一块考;2、圆锥曲线;3、导数、导数的应用(高考必考)。
选修1--2:1、统计;2、推理证明:一般不考,若考会是填空题;3、复数:(新课标比老课本难的多,高考必考内容)。
理科:选修2—1、2—2、2—3。
选修2--1:1、逻辑用语;2、圆锥曲线;3、空间向量:(利用空间向量可以把立体几何做题简便化)。
数学公式高中理科在高中理科学习中,数学公式是必不可少的重要内容之一。
数学公式的掌握对于理科学生来说至关重要,因为它们是解决数学问题的关键工具。
下面将介绍一些高中理科中常见的数学公式及其应用。
1. 三角函数公式三角函数是高中数学中重要的内容之一,常见的三角函数包括正弦函数、余弦函数、正切函数等。
它们之间的关系可以用以下公式表示:•正弦函数公式:sin2A+cos2A=1;•余弦函数公式:cos2A=1−sin2A;•正切函数公式:tanA=sinA。
2. 初等代数公式在代数学习中,初等代数公式是基础而重要的内容。
常见的初等代数公式包括:•二次方程求根公式:x=−b±√b2−4ac;2a•因式分解公式:a2−b2=(a−b)(a+b);•完全平方公式:a2+2ab+b2=(a+b)2。
这些代数公式在解决方程、因式分解等代数问题时非常有效。
3. 几何公式几何学是高中数学中的另一个重要分支,而几何公式在解决空间和平面几何问题时起着至关重要的作用。
常见的几何公式包括:•长方形面积公式:S=l×w,其中S表示面积,l表示长,w表示宽;•圆的周长公式:C=2πr,其中C表示周长,r表示半径;•三角形面积公式:S=1bℎ,其中S表示面积,b表示底边长,ℎ表示高。
2这些几何公式在计算几何图形的周长、面积等方面具有重要意义。
综上所述,数学公式在高中理科学习中扮演着不可或缺的角色。
掌握各种数学公式,熟练运用它们解决各类数学问题,对于提高学生的数学素养和解题能力具有重要意义。
希望同学们能够深入学习各种数学公式,并在实际问题中灵活运用,进一步提升数学水平。
高考数学常用公式(不等式、复数及其他部分)1.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈⇒2a b +≥当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>> (4)b a b a b a +≤+≤-2.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->, 如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间. 121212()()0()x x x x x x x x x <<⇔--<<;121212,()()0()x x x x x x x x x x <>⇔--><或.3.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<. 22x a x a x a >⇔>⇔>或x<-a.4.无理不等式:(1()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩. 5.指数不等式与对数不等式(1)当a>1时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当0<a<1时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩6.特殊数列的极限(1)0||1lim 11||11n n q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k t t t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 . (3)()111lim 11n n a q a S q q→∞-==--(S 无穷等比数列}{11n a q - (|q|<1)的和). 7.,a bi c di a c b d +=+⇔==.(a,b,c,d ∈R ) 8.复数z=a+bi 的模(或绝对值)9.复数的四则运算法则(1)(a+bi)+(c+di)=(a+c)+(b+d)i ;(2)(a+bi)-(c+di)=(a-c)+(b-d)i ;(3)(a+bi)(c+di)=(ac-bd)+(bc+ad)i ; (4)2222()()(0)ac bd bc ad a bi c di i c di c d c d+-+÷+=++≠++. 10.集合关系: U U A B A A B B A B C B C A =⇔=⇔⊆⇔⊆ U A C B ⇔=Φ U C A B R ⇔=11.平面两点间的距离公式 ,A B d=||AB ==11(,)x y ,B 22(,)x y ).12.向量的平行与垂直 设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 a ∥b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.13.线段的定比分公式 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12PP 的分点,λ是实数,且12PP PP λ= ,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+- (11t λ=+). 14.三角形的重心坐标公式 △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 15.点的平移公式 ''''x x h x x h y y k y y k ⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ (图形F 上的任意一点P(x ,y)在平移后图形F ′上的对应点为'''(,)P x y ,且'PP 的坐标为(h ,k )).(注:只需记住前一个关系)。
高考数学知识点公式总结数学作为一门理科学科,对于高中阶段的学生来说,可能是其中最具挑战性的一门课程。
而在高考中,数学科目的考试分值往往较高,所以对于考生来说,熟练掌握数学的知识点和公式是非常重要的。
本文将对一些重要的数学知识点和公式进行总结和归纳。
1. 代数与函数在高考数学中,代数与函数是非常重要的一块内容。
代数中的基本运算法则是学习代数的基础,如加减乘除法则、等式与方程的性质等。
同时需要掌握的还有函数的概念、函数的性质、函数的图像、函数的变化规律等。
2. 平面几何平面几何是高考数学中的重要内容之一。
在平面几何中,需要掌握直线、角、三角形、四边形、圆的性质和计算等。
特别是在解决几何问题时,需要灵活运用各种几何定理和推理。
3. 立体几何立体几何也是高考数学中的重要内容。
掌握空间几何图形的性质、立体几何的计算和推理方法是解答立体几何问题的关键。
此外,需要特别注意立体几何和平面几何相结合的题型,这是高考中经常出现的难点。
4. 概率与统计概率与统计是数学中的实用分支。
在高考中,概率与统计的考查往往涉及到实际问题的分析与解决。
需要熟悉概率的基本概念、概率计算的方法和统计的基本概念、统计数据的处理等。
接下来,我们将对一些具体的数学知识点和公式进行总结和归纳。
1. 二次函数的顶点坐标公式:对于二次函数y=ax²+bx+c(a≠0)来说,顶点的横坐标为x=-b/2a,纵坐标为y=c-b²/4a。
2. 三角函数的基本关系:三角函数中最常用的是正弦函数、余弦函数和正切函数。
它们之间有一些基本的关系,如sin²θ+cos²θ=1,tanθ=sinθ/cosθ等。
同时,圆的弧长公式为L=2πr,圆的面积公式为A=πr²。
4. 空间几何中的体积公式:长方体的体积公式为V=a·b·c,正方体的体积公式为V=a³,圆柱体的体积公式为V=πr²h等。
高考理科数学考前必记的60个知识点集合(1)集合之间关系的判断方法①A真含于B⇔A⊆B且A≠B,类比于a<b⇔a≤b且a≠b.②A⊆B⇔A真含于B或A=B,类比于a≤b⇔a<b或a=b.③A=B⇔A⊆B且A⊇B,类比于a=b⇔a≤b且a≥b.(2)集合间关系的两个重要结论①A⊆B包含A=B和A B两种情况,两者必居其一,若存在x∈B且x∉A,说明A≠B ,只能是A B.②集合相等的两层含义:若A⊆B且B⊆A,则A=B;若A=B,则A⊆B且B⊆A.[提醒]1任何一个集合是它本身的子集,即A⊆A.2对于集合A,B,C,如果A⊆B且B⊆C,则有A⊆C.3含有n个元素的集合有2n个子集,有2n-1个真子集,有2n-2个非空真子集.4集合中元素的三大特性:确定性、互异性、无序性.常见关键词及其否定形式关键词等于大于小于是一定是都是至少有一个至多有一个存在否定词不等于不大于不小于不是不一定是不都是一个也没有至少有两个不存在命题(1)四种命题间的相互关系(2)四种命题的真假性原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假[提醒]1两个命题互为逆否命题,它们有相同的真假性.2两个命题为互逆命题或互否命题,它们的真假性没有关系.3在判断一些命题的真假时,如果不容易直接判断,则可以判断其逆否命题的真假.(3)含有一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题,如下所述:命题命题的否定∀x∈M,p(x)∃x0∈M,非p(x0)∃x0∈M,p(x0)∀x∈M非p(x) 充分、必要条件(1)充分条件与必要条件的相关概念①如果p⇒q,那么p是q的充分条件,同时q是p的必要条件.②如果p⇒q,但q⇒/ p,那么p是q的充分不必要条件.③如果p⇒q,且q⇒p,那么p是q的充要条件.④如果q⇒p,且p⇒/ q,那么p是q的必要不充分条件.⑤如果p⇒/ q,且q⇒/ p,那么p是q的既不充分也不必要条件.(2)充分、必要条件与集合的对应关系从逻辑观点看从集合观点看p是q的充分条件(p⇒q)A⊆Bp是q的必要条件(q⇒p)A⊇Bp是q的充分不必要条件(p⇒q,q⇒/ p)A真含于Bp是q的必要不充分条件(q⇒p,p⇒/ q)A真包含Bp是q的充要条件(p⇔q)A=B函数的定义域及相关的6个结论(1)如果f(x)是整式函数,那么函数的定义域是R.(2)如果f(x)是分式函数,那么函数的定义域是使分母不等于0的实数的集合.(3)如果f(x)是偶次根式函数,那么函数的定义域是使被开方数大于或等于0的实数的集合.(4)如果f(x)是对数函数,那么函数的定义域是使真数大于0的实数的集合.(5)如果f(x)是由几个代数式构成的,那么函数的定义域是使各式子都有意义的实数的集合.(6)如果f(x)是从实际问题中得出的函数,则要结合实际情况考虑函数的定义域.函数的值域求函数值域常用的7种方法(1)配方法:二次函数及能通过换元法转化为二次函数的函数类型.(2)判别式法:分子、分母中含有二次项的函数类型,此函数经过变形后可以化为x2A(y)+xB(y)+C(y)=0的形式,再利用判别式加以判断.(3)换元法:无理函数、三角函数(用三角代换)等,如求函数y=2x-3+13-4x的值域.(4)数形结合法:函数和其几何意义相联系的函数类型,如求函数y=3-sin x2-cos x的值域.(5)不等式法:利用几个重要不等式及推论求最值,如a2+b2≥2ab,a+b≥2ab(a,b为正实数).(6)有界性法:一般用于三角函数类型,即利用sin x∈[-1,1],cos x∈[-1,1]等.(7)分离常数法:适用于解析式为分式形式的函数,如求y=x+1x-1的值域.指数函数与对数函数(1)指数函数与对数函数的对比区分表解析式y=a x(a>0且a≠1)y=log a x(a>0且a≠1)定义域R(0,+∞)值域(0,+∞)R图象关系指数函数对数函数奇偶性非奇非偶非奇非偶单调性0<a<1时,在R上是减函数;0<a<1时,在(0,+∞)上是减函数;a>1时,在R上是增函数a>1时,在(0,+∞)上是增函数[提醒]直线x=1与所给指数函数图象的交点的纵坐标即底数,直线y=1与所给对数函数图象的交点的横坐标即底数.(2)比较幂值大小的方法①若指数相同,底数不同,则考虑幂函数.②若指数不同,底数相同,则考虑指数函数.③若指数与底数都不同,则考虑借助中间量,这个中间量的底数与所比较的一个数的底数相同,指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.(3)常见抽象函数的性质与对应的特殊函数模型的对照表抽象函数的性质特殊函数模型①f(x+y)=f(x)+f(y)(x∈R,y∈R);②f(x-y)=f(x)-f(y)(x∈R,y∈R)正比例函数f(x)=kx(k≠0)①f (x )f (y )=f (x +y )(x ,y ∈R ); ②f (x )f (y )=f (x -y )(x ,y ∈R ,f (y )≠0) 指数函数f (x ) =a x (a >0,a ≠1)①f (xy )=f (x )+f (y )(x >0,y >0);②f (xy)=f (x )-f (y )(x >0,y >0)对数函数f (x )=log a x (a >0,a ≠1)①f (xy )=f (x )f (y )(x ,y ∈R ); ②f (x y )=f (x )f (y )(x ,y ∈R ,y ≠0)幂函数f (x )=x n函数零点的判断方法(1)利用零点存在定理判断法:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0.这个c 也就是方程f (x )=0的根.口诀:函数零点方程根,数形本是同根生,函数零点端点判,图象连续不能忘.(2)代数法:求方程f (x )=0的实数根.(3)几何法:对于不能用求根公式的方程,可以将它与函数y =f (x )的图象联系起来,并利用函数的性质找出零点. 导数(1)基本初等函数的导数公式①(sin x )′=cos x ,(cos x )′=-sin x .②(ln x )′=1x (x >0),(log a x )′=1x ln a(x >0,a >0,且a ≠1).③(e x )′=e x ,(a x )′=a x ln a (a >0,且a ≠1). (2)导数的四则运算法则 ①(u ±v )′=u ′±v ′⇒[f 1(x )+f 2(x )+…+f n (x )]′ =f ′1(x )+f ′2(x )+…+f ′n (x ).②(u v )′=v u ′+v ′u ⇒(c v )′=c ′v +c v ′=c v ′(c 为常数). ③⎝⎛⎭⎫u v ′=v u ′-v ′u v 2(v ≠0).[提醒] 1若两个函数可导,则它们的和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.2利用公式求导时,一定要注意公式的适用范围及符号,如(x n )′=nx n -1中n ∈Q *,(cos x )′=-sin x . 3注意公式不要用混,如(a x )′=a x ln a ,而不是(a x )′=xa x -1.4导数的加法与减法法则,可由两个可导函数推广到任意有限个可导函数的情形,即[u (x )±v (x )±…±w (x )]′=u ′(x )±v ′(x )±…±w ′(x ).5一般情况下,[f (x )g (x )]′≠f ′(x )g ′(x ),[f (x )·g (x )]′≠f ′(x )+g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )g ′(x ),⎣⎢⎡⎦⎥⎤f (x )g (x )′≠f ′(x )-g ′(x ).6。
高考数学公式及知识点总结高考数学是许多同学感到头疼的科目,但只要掌握了重点公式和知识点,就能在考试中取得更好的成绩。
以下是对高考数学中重要公式和知识点的详细总结。
一、函数1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则f(x)为偶函数;对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则 f(x)为奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。
3、常见函数的图像和性质一次函数:y = kx + b(k、b 为常数,k≠0),图像是一条直线。
二次函数:y = ax²+ bx + c(a≠0),图像是一条抛物线。
当 a>0 时,开口向上;当 a<0 时,开口向下。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0),图像是双曲线。
当 k>0 时,图像在一、三象限;当 k<0 时,图像在二、四象限。
二、三角函数1、三角函数的定义正弦函数:sinα =对边/斜边余弦函数:cosα =邻边/斜边正切函数:tanα =对边/邻边2、特殊角的三角函数值|角度|0°|30°|45°|60°|90°|||||||||sin|0|1/2|√2/2|√3/2|1||cos|1|√3/2|√2/2|1/2|0||tan|0|√3/3|1|√3|不存在|3、三角函数的基本关系式sin²α +cos²α = 1tanα =sinα/cosα4、三角函数的图像和性质正弦函数y =sin x 的图像,定义域为R,值域为-1,1,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ,0)(k∈Z)。
2023高考数学常用导数公式常用导数公式1、y=c(c为常数)y=02、y=x^ny=nx^(n-1)3、y=a^xy=a^xlna4、y=e^xy=e^x5、y=logaxy=logae/x6、y=lnxy=1/x7、y=sinxy=cosx8、y=cosxy=-sinx9、y=tanxy=1/cos^2x10、y=cotxy=-1/sin^2x11、y=arcsinxy=1/√1-x^212、y=arccosxy=-1/√1-x^213、y=arctanxy=1/1+x^214、y=arccotxy=-1/1+x^2高考数学得高分有哪些答题技巧一、提前进入数学情境高考数学考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考,保证数学满分答题状态。
二、集中注意,消除焦虑怯场集中注意力是高考数学满分的基础,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松好的情绪可以帮助考试在高考数学时取得满分。
三、沉着应战良好的开端是成功的一半,从高考考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手答题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高,冲击数学满分。
高考考试答题技巧答题顺序:从卷首依次开始一般地讲,全卷大致是先易后难的排列,所以,正确的做法是从卷首开始依次做题,先易后难,最后攻坚。