邹生书——构造常数数列巧求数列通项

开号宗旨:为热爱学习和研究的高中数学教师和教研员搭建学习交流平台,提升教学能力,促进专业发展。本公众号致力传播数学文化,发表教研成果,交流教学经验,探讨数学问题,展示解题方法,分享教学资源,为服务高中教学作贡献。

邹生书,男,1962年12月出生,本科学历,理学士学位,中学数学高级教师,黄石市高中数学骨干教师。主要从事高中数学教学、高中数学解题研究和探究性学习等。从2007年8月到2018年8月,在《数学通讯》《数学通报》《数学教学》《中学数学》《中学数学教学》等,二十多种学术期刊上发表解题和探究性学习文章300余篇。

公众号“邹生书数学”诚请高中数学教师、教研员和热爱数学的朋友不吝赐稿。来稿请注明真实姓名、工作单位和联系方式,一般只接受word文档格式的电子稿件,文稿请认真审查,防止错漏,确保无误,文责自负。

商务联系:13297228197。

构造常数数列  巧求数列通项

湖北省阳新县高级中学     邹生书

已知数列递推关系求数列通项公式,尽管递推关系表现形式多种多样,求数列通项的方法精彩纷呈,但求通项的基本思想只有一个,那就是转化和化归思想。根据数列递推关系形式上的特点,采用适当的方法将其转化为新的等差数列或等比数列,求出新数列的通项,进而求出所求数列的通项公式。

非零常数数列既是公比为1的等比数列也是公差为零的等差数列。在数列{an}中,若对任意的正整数n都有an+1=an,则数列{an}为常数数列,其通项公式为an=a1。在求某些递推数列的通项公式时,若能构造出一个新的常数数列,便能简捷地求出通项公式。下面举例说明构造常数数列求数列通项公式等问题的思想方法,供参考。

点评:例1的解法2关键是会解读等积式为常数数列,有整体意识会用常数数列的定义识别就可以了,属于认知理解阶段。而例2的解法2则需要变形两边乘以(n+1)后才能成为常数数列,属于构造常数数列求解通项,是有意识地应用常数数列解题阶段,是创造性思维,思维层次明显要高一个档次。

下面我们再来看一些能够通过构造常数数列求数列通项的例子。

(Ⅱ)对数列{an}的通项公式我们有如下两种构造常数数列的求解方法:

法1 先求前n项和Sn,再求通项an

构造常数数列不仅可简捷地解决一类已知递推关系求数列通项的数列问题,而且可解决某些与数列有关的问题,举例如下:

例7(2005年广东省高考题改编)

【小结】从以上例题我们可以看出,解这类问题的关键是对递推关系式进行恰到好处的变形,使之成为一个常数数列{an},在构造过程中要有目标意识、整体思想、直觉能力和敏锐的数学眼光,这样才能慧眼识英雄,不至于产生“无缘当面不相识”的遗憾,而是“有情千里来相会”的必然。而且还能无中生有,通过适当变形使等式左右“同构”,从而构造常数数列巧求数列通项,从解题中欣赏数学的奇异之美,体验构造成功后给我们带来的愉悦。

THE END
0.2022吉林省考:最值问题之数列构造延吉华图2022吉林省考:最值问题之数列构造-延吉华图 最值这个题型,很多考生弄不明白“最大的最小为多少”、“最小的最大为多少”、“排名第几的最多/最少为多少”,这个题目是什么意思?到底是求最大还是求最小? 其实,最值这个题型的题型特征就有“最大、最小、最多、最少”这样的词语,它包括三种题型:最不利构造、jvzquC41ln4iwjyw0eun1;5441673=444;87;>3jvor
1.22数列解法第一招:天造地设的等比数列.特别地,当 为常数项时,可构造 是公比为 的等比数列. ②形如 ,可利用待定系数法,得到 ,从而可得 为等比数列,进而利用累加法求通项公式或转化成形如 的形式继续构造等比数列求解. ③形如 ,利用两边取常用对数,可得到 ,从而构造 为等比数列. jvzq<84yyy4489iqe0ipo8hqpvkov87312=4386619<52@;7;a?9:B::26
2.构造数列中的常见变形总结中阶和高阶辅导本文详细介绍十种常见递推数列的构造方法,包括线性递推、多项式递推、分式函数递推等多种类型,每种类型提供具体构造方向及实例,帮助读者深入理解递推数列的解题策略。 类型Ⅰ: 形如,为常数,即,构造变形方向: 其一:,构造为等比数列,; 其二:先得到,两式做差,得到 jvzquC41dnuh0lxfp0tfv8|gkzooa<947:68:8ftvkimg8igvcomu8>586;179
3.2022省考行测数量关系备考必会题之数列构造公务员考试网2022省考行测数量关系备考必会题之数列构造 公务员行测考试中的数量关系绝对是大多数同学最头疼的模块,主要是因为其难度大、耗时久,因此很多同学考场中都将其放在最后处理,甚至有同学考完试交了卷数量关系题目一片空白。但是数量关系单个题目分值一直都是数一数二的,其重要性不言而喻。在这里,小编给大家梳理一些数量jvzquC41yy}/j~fvw0ipo8724451399146;74;60jvsm
4.构造法求数列的通项6篇(全文)考查的题目往往给出的数列既不是等差数列也不是等比数列, 只给出其首项和递推公式, 要求出数列的通项公式, 这类题目通常采用构造法, 根据递推公式构造出一个新数列, 从而间接地求出原数列的通项公式, 这样的考查也正好体现了高考对学生的要求, 掌握基本的数学思想转化与化归思想和常见的数学方法构造法, 下面jvzquC41yy}/;B}wgunv0lto1y5jmn~43yz3:vq0jvsm
5.【一节课系列】【数列篇】构造法求数列的通项公式(上)加载中 【一节课系列】【数列篇】构造法求数列的通项公式(上) 拳击那点事 +订阅 发布于:江西省2023.10.15 00:00 【一节课系列】【数列篇】构造法求数列的通项公式(上)jvzquC41tqrm0|tjw0ipo8f194>4::5:9a712:663;;
6.国考笔试模拟:数列构造国家公务员考试网【导读】华图国家公务员考试网同步黑龙江华图教育发布:国考笔试模拟:数列构造,详细信息请阅读下文!,更多资讯请关注黑龙江华图微信公众号(hljhtjy)或加入国考交流群【423764846】 黑龙江华图咨询电话:0451-88882340 在线咨询: 2024年公务员上岸交流群 有一座 13. 2 万人口的城市, 需要划分为 11 个投票区, 任何一个区jvzquC41jnp/j~fvw0ipo87245515<613;=7:?;0jvsm
7.2024年河北公务员行测备考:数量关系之三类最值答题妙招题型特征:提问中出现“最……最……” 答题思路:找最极端情况,构造数列,方程求解 核心提示:第一步:设未知数→问谁设谁; 第二步:构造其他未知数,构造时满足极端思维; 第三步:求和,将所有未知数加和; 第四步:求解,如果结果是正整数,直接选择;如果答案是小数,涉及取整(问题为“××至少为多少?”,则所得结果jvzquC41jg4iwjyw0eun1;5451722A436:<44B3jvor
8.2023年云南省公务员考前冲刺:最值问题的秒题技巧可列方程:71+70+x+(x-1)+(x-2)+54=62×6,解得x=60。 因此,选择B选项 。 数列构造解题方法简单,后期大家可以多练几个题,把解题方法熟练掌握,即可轻松拿分。jvzquC41{p4iwjyw0eun1;5451634<438581;:3jvor
9.机器学习数学笔记微积分梯度jensen不等式单调数列有上线,必有其极限 构造数列 Xn 证明其单调有上界 又因为其有(1+1)项,则其必比 2 要大然而又比 3 要小 定理二:两边夹定理 自然常数 e 的推导 自然常数e可以看做e=1+11!+12!+13!+14!++1n! 微分与积分 常用函数的导数公式 分部积分法 方向导数与梯度 对于方向导数我们也可以视为(∂jvzquC41enuvf7ygpekov7hqo1jfxnqqrgx0c{ykenk03?<;8:?
10.省考备考热点:本题考查数列构造用方程法解题【导读】双鸭山人事考试网提供以下信息:省考备考热点:本题考查数列构造用方程法解题,更多资讯请关注黑龙江华图微信公众号(hljhtjy),双鸭山市培训咨询电话:0469-6695431 / 15663909059。 19个不同的正整数从小到大排序,总和为191,则最大的数只能取: A.18 jvzquC41uj{bpp~cujgo0qzcvw4dqv4424902<6613?87==40jznn
11.2022国考行测数量关系最值问题之数列构造公务员考试网最值问题在近年的考试中也属于高频考点,而且值得欣慰的是这类题目的解题步骤一般比较固定,所以对于有系统学习过的考生来说,一旦遇到了这类题目必然要将该分值牢牢攥住。最值问题在行测考试中一般概括为三大类,分别是最不利构造、数列构造和多级和反向构造。今天给大家介绍数列构造的相关知识点和解题方法,一起来学习吧jvzquC41yy}/j~fvw0ipo8724351;;=144?62;70jvsm