数列通项公式常见求法

认证主体:沃**(实名认证)

IP属地:上海

下载本文档

1、数列在高中数学中占有非常重要的地位,每年高考都会出现有关数列的方面的试题,一般分为小题和大题两种题型,而数列的通项公式的求法是常考的一个知识点,一般常出现在大题的第一小问中,因此掌握好数列通项公式的求法不仅有利于我们掌握好数列知识,更有助于我们在高考中取得好的成绩。下面本文将中学数学中有关数列通项公式的常见求法进行较为系统的总结,希望能对同学们有所帮助。一.公式法高中重点学了等差数列和等比数列,当题中已知数列是等差数列或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。1、等差数列公式例1、(2011辽宁理)已知等差数列an满足a2=0,a6+a

2、8=-10(I)求数列an的通项公式;解:(I)设等差数列的公差为d,由已知条件可得解得故数列的通项公式为2、等比数列公式例2.(2011重庆理)设是公比为正数的等比数列,。 ()求的通项公式解:I)设q为等比数列的公比,则由,即,解得(舍去),因此所以的通项为3、通用公式若已知数列的前项和的表达式,求数列的通项可用公式 求解。一般先求出a1=S1,若计算出的an中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。例3、已知数列的前n项和,求的通项公式。解:,当时 由于不适合于此等式 。 二.当题中告诉了数列任何前一项和后一项的递推关系即:和an-1的关系时我们可以根据具体情况采

3、用下列方法1、叠加法一般地,对于型如类的通项公式,且的和比较好求,我们可以采用此方法来求。即:;例4、(2011四川理8)数列的首项为,为等差数列且若则,则A0 B3 C8 D11解:由已知知由叠加法例5、 已知数列满足,求数列的通项公式。解:(1)由题知:2、叠乘法一般地对于形如“已知a1,且=f(n)(f(n)为可求积的数列)”的形式可通过叠乘法求数列的通项公式。即:;例6、在数列中,=1, (n+1)·=n·,求的表达式。解:由(n+1)·=n·得,=··=所以3、构造法当数列前一项和后一项即和an-1的递推关系较为复杂时,我们

4、往往对原数列的递推关系进行变形,重新构造数列,使其变为我们学过的熟悉的数列(等比数列或等差数列)。具体有以下几种常见方法。(1)、待定系数法、一般地对于an=kan-1 +m(k、m为常数)型,可化为的形式an+=k(an-1 +).重新构造出一个以k为公比的等比数列,然后通过化简用待定系数法求,然后再求。例7、(2011广东理)设b>0,数列满足a1=b,.(1)求数列的通项公式;解:,得,设,则,()当时,是以为首项,为公差的等差数列,即,()当时,设,则,令,得,知是等比数列,又,、对于这种形式,一般我们讨论两种情况:i、当f(n)为一次多项式时,即数列的递推关系为型,可化为的形式

5、来求通项。例8.设数列中,求的通项公式。解:设 与原式比较系数得: 即 令ii、当f(n)为指数幂时,即数列递推关系为(A、B、C为常数,)型,可化为=)的形式.构造出一个新的等比数列,然后再求例9.(2003年全国高考题)设为常数,且(),证明:对任意n1,解:证明:设 用代入可得是公比为,首项为的等比数列,(),即:当然对于这种形式递推关系求时,当A=C时,我们往往也会采取另一种方法,即左右两边同除以Cn +1,重新构造数列,来求。例10、(2007天津理)在数列中,其中()求数列的通项公式;解:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为(2)、倒数法一般地形

6、如、等形式的递推数列可以用倒数法将其变形为我们熟悉的形式来求通项公式。例11.已知数列满足:,求的通项公式。 解:原式两边取倒数得: 即例12、(北京龙门育才学校2011届高三上学期第三次月考)在数列中,并且对任意都有成立,令()求数列的通项公式 ;解:(1)当n=1时,,当时,由 ,等式两边取倒数得:所以所以数列是首项为3,公差为1的等差数列,所以数列的通项公式为(3)、对数法当数列和an-1的递推关系涉及到高次时,形如:anp=man-1q(其中m、p、q为常数)等,我们一般采用对数法,等式两边分别取对数,进行降次,再重新构造数列进行求解。例13、(2006山东)已知a1=2,点(an,a

7、n+1)在函数f(x)=x2+2x的图象上,其中=1,2,3,(1) 证明数列lg(1+an)是等比数列;解:(1)由已知,两边取对数得,即是公比为2的等比数列.例14、若数列中,=3且(n是正整数),则它的通项公式是=(2002年上海高考题).解 由题意知0,将两边取对数得,即,所以数列是以=为首项,公比为2的等比数列, ,即.(4)、特征方程法、一般地对于形如已知an+2=A an+1 +B an (A、B是常数)的二阶递推数列,我们可以采取两种方法来求通项。法一:可用特征方程的方法求解:我们称方程:x2-Ax-B=0为数列的特征方程(i)当方程有两个相异的实根(或虚根)p、q时,有:,其

8、中c1与c2由已知确定。(ii)当方程有唯一的实根p时,有,其中c1与c2由已知确定。法二:可构造成,则为等比数列,进而求通项公式,这种方法过程较为繁杂。例15、已知a 1 =2, a 2 =3,求通项公式。解法一:特征方程的根为1,所以an = (c1n+c2)×1n由:得c1 = c2 = 1,所以an = n + 1。解法二:设,可得x 1 = x 2 = 1,于是an+1an 是公比为1的等比数列,an+1an = 1,所以an = n + 1。例16已知数列满足,求数列的通项。解:其特征方程为,解得,令,由,得,例17、(2009陕西卷文)已知数列满足, .令,证明:是等比

9、数列;()求的通项公式。解:(1)证明:当时,所以是以1为首项,为公比的等比数列。(2)解由(1)知当时,当时,。所以。本题也可以用特征方程来证明,同学们不妨自己试试。、一般地形如:(a、b、c、d为常数)可得到相应的特征方程:,再将其变为,通过该方程的根的情况来重新构造数列。(i)如果方程有两个相异的实根,则有数列是以为首项,为公比的等比数列;(ii)如果方程有两个相同的实根,则数列是以为首项,为公差的等差数列。例18、(2009江西理22)各项均为正数的数列,且对满足的正整数都有(1)当时,求通项解:(1)由得将代入化简得构造方程(a=2,b=1,c=1,d=2)化简得:x2=1解得x=1

10、和-1.所以数列为等比数列,所以从而:即可验证,满足题设条件.例19已知数列满足,求数列的通项解:其特征方程为,化简得,解得,令由得,可得,数列是以为首项,以为公比的等比数列,三 、当题中给出的是Sn 和的关系时,我们一般通过作差法结合an= SnSn1 这个通用公式对原等式进行变形,消掉Sn得到和an+1的递推关系,或消掉得到Sn和Sn1的递推关系,然后重新构造数列求通项公式。例20、(2007湖北理19)已知数列的前项和为,且满足:,N*,()求数列的通项公式; 解:(I)由已知可得,两式相减可得 即 又所以r=0时, 数列为:a,0,0,; 当时,由已知(), 于是由可得,成等比数列,

11、综上,数列的通项公式为例21:(2007重庆理)已知各项均为正数的数列的前n项和满足,且(1)求的通项公式;解:由,解得a11或a12,由假设a1S11,因此a12。又由an+1Sn+1- Sn,得an+1- an-30或an+1-an因an0,故an+1-an不成立,舍去。因此an+1- an-30。从而an是公差为3,首项为2的等差数列,故an的通项为an3n-2。例22.(2009全国卷理)设数列的前项和为 已知(I)设,证明数列是等比数列 (II)求数列的通项公式。解:(I)由及,有由, 则当时,有得又,是首项,公比为的等比数列(II)由(I)可得,数列是首项为,公差为的等比数列,四、猜想法当我们在求数列通项时没想到比较好的方法时,猜想法不失为一种权宜之计。运用猜想法解题一般涉及到三个步骤:(1)利用所给的递推式求出,(2)猜想出满足递推式的一个通项公式,(3)用数学归纳法证明猜想是正确的。例23、(2007天津理)在数列中,其中()求数列的通项公式;解:,由此可猜想出数列的通项公式为以下用数学归纳法证明(1)当时,等式成立(2)假设当时等式成立,即,那么这就是说,当

0/150

联系客服

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!

THE END
0.2022吉林省考:最值问题之数列构造延吉华图2022吉林省考:最值问题之数列构造-延吉华图 最值这个题型,很多考生弄不明白“最大的最小为多少”、“最小的最大为多少”、“排名第几的最多/最少为多少”,这个题目是什么意思?到底是求最大还是求最小? 其实,最值这个题型的题型特征就有“最大、最小、最多、最少”这样的词语,它包括三种题型:最不利构造、jvzquC41ln4iwjyw0eun1;5441673=444;87;>3jvor
1.22数列解法第一招:天造地设的等比数列.特别地,当 为常数项时,可构造 是公比为 的等比数列. ②形如 ,可利用待定系数法,得到 ,从而可得 为等比数列,进而利用累加法求通项公式或转化成形如 的形式继续构造等比数列求解. ③形如 ,利用两边取常用对数,可得到 ,从而构造 为等比数列. jvzq<84yyy4489iqe0ipo8hqpvkov87312=4386619<52@;7;a?9:B::26
2.构造数列中的常见变形总结中阶和高阶辅导本文详细介绍十种常见递推数列的构造方法,包括线性递推、多项式递推、分式函数递推等多种类型,每种类型提供具体构造方向及实例,帮助读者深入理解递推数列的解题策略。 类型Ⅰ: 形如,为常数,即,构造变形方向: 其一:,构造为等比数列,; 其二:先得到,两式做差,得到 jvzquC41dnuh0lxfp0tfv8|gkzooa<947:68:8ftvkimg8igvcomu8>586;179
3.2022省考行测数量关系备考必会题之数列构造公务员考试网2022省考行测数量关系备考必会题之数列构造 公务员行测考试中的数量关系绝对是大多数同学最头疼的模块,主要是因为其难度大、耗时久,因此很多同学考场中都将其放在最后处理,甚至有同学考完试交了卷数量关系题目一片空白。但是数量关系单个题目分值一直都是数一数二的,其重要性不言而喻。在这里,小编给大家梳理一些数量jvzquC41yy}/j~fvw0ipo8724451399146;74;60jvsm
4.构造法求数列的通项6篇(全文)考查的题目往往给出的数列既不是等差数列也不是等比数列, 只给出其首项和递推公式, 要求出数列的通项公式, 这类题目通常采用构造法, 根据递推公式构造出一个新数列, 从而间接地求出原数列的通项公式, 这样的考查也正好体现了高考对学生的要求, 掌握基本的数学思想转化与化归思想和常见的数学方法构造法, 下面jvzquC41yy}/;B}wgunv0lto1y5jmn~43yz3:vq0jvsm
5.【一节课系列】【数列篇】构造法求数列的通项公式(上)加载中 【一节课系列】【数列篇】构造法求数列的通项公式(上) 拳击那点事 +订阅 发布于:江西省2023.10.15 00:00 【一节课系列】【数列篇】构造法求数列的通项公式(上)jvzquC41tqrm0|tjw0ipo8f194>4::5:9a712:663;;
6.国考笔试模拟:数列构造国家公务员考试网【导读】华图国家公务员考试网同步黑龙江华图教育发布:国考笔试模拟:数列构造,详细信息请阅读下文!,更多资讯请关注黑龙江华图微信公众号(hljhtjy)或加入国考交流群【423764846】 黑龙江华图咨询电话:0451-88882340 在线咨询: 2024年公务员上岸交流群 有一座 13. 2 万人口的城市, 需要划分为 11 个投票区, 任何一个区jvzquC41jnp/j~fvw0ipo87245515<613;=7:?;0jvsm
7.2024年河北公务员行测备考:数量关系之三类最值答题妙招题型特征:提问中出现“最……最……” 答题思路:找最极端情况,构造数列,方程求解 核心提示:第一步:设未知数→问谁设谁; 第二步:构造其他未知数,构造时满足极端思维; 第三步:求和,将所有未知数加和; 第四步:求解,如果结果是正整数,直接选择;如果答案是小数,涉及取整(问题为“××至少为多少?”,则所得结果jvzquC41jg4iwjyw0eun1;5451722A436:<44B3jvor
8.2023年云南省公务员考前冲刺:最值问题的秒题技巧可列方程:71+70+x+(x-1)+(x-2)+54=62×6,解得x=60。 因此,选择B选项 。 数列构造解题方法简单,后期大家可以多练几个题,把解题方法熟练掌握,即可轻松拿分。jvzquC41{p4iwjyw0eun1;5451634<438581;:3jvor
9.机器学习数学笔记微积分梯度jensen不等式单调数列有上线,必有其极限 构造数列 Xn 证明其单调有上界 又因为其有(1+1)项,则其必比 2 要大然而又比 3 要小 定理二:两边夹定理 自然常数 e 的推导 自然常数e可以看做e=1+11!+12!+13!+14!++1n! 微分与积分 常用函数的导数公式 分部积分法 方向导数与梯度 对于方向导数我们也可以视为(∂jvzquC41enuvf7ygpekov7hqo1jfxnqqrgx0c{ykenk03?<;8:?
10.省考备考热点:本题考查数列构造用方程法解题【导读】双鸭山人事考试网提供以下信息:省考备考热点:本题考查数列构造用方程法解题,更多资讯请关注黑龙江华图微信公众号(hljhtjy),双鸭山市培训咨询电话:0469-6695431 / 15663909059。 19个不同的正整数从小到大排序,总和为191,则最大的数只能取: A.18 jvzquC41uj{bpp~cujgo0qzcvw4dqv4424902<6613?87==40jznn
11.2022国考行测数量关系最值问题之数列构造公务员考试网最值问题在近年的考试中也属于高频考点,而且值得欣慰的是这类题目的解题步骤一般比较固定,所以对于有系统学习过的考生来说,一旦遇到了这类题目必然要将该分值牢牢攥住。最值问题在行测考试中一般概括为三大类,分别是最不利构造、数列构造和多级和反向构造。今天给大家介绍数列构造的相关知识点和解题方法,一起来学习吧jvzquC41yy}/j~fvw0ipo8724351;;=144?62;70jvsm