对映异构基本概念

第六章对映异构立体化学(stereochemistry)是一种以三度空间来研究分子结构和性质的科学,有机分子是立体的,所以在研究它时必须要有立体化学的观念。

目前已发现许多有机化合物的结构和性质一定要从它们的空间排列来解释。

正由于有机分子是立体的,所以会因它们中的各原子在空间排列位置的不同而造成异构现象--立体异构。

前面所讲的构象异构和顺、反异构都是立体异构。

可是构象异构和顺、反异构不同,构象异构可借分子中单键的旋转而互变。

因此很难分离出构象异构体,只能利用光谱分析、热力学计算、偶极矩测量以及X-光或电子衍射证明它们的存在。

而顺、反异构体的互变要通过键的断裂,比较困难,因此能得到纯的顺式异构体和反式异构体。

立体异构除了上面两种以外,这里我们介绍第三种,那就是对映异构(Enantiomerism)。

例如:当我们进行2-丁烯的水合反应时,分离到两种丁醇,它们的物理性质和化学性质基本上相同,只是在对偏振光的作用上有差异,一个使偏振光向右转(右旋体Dextrorotatory)一个使偏振光向左转(左旋体Levorotatory),转的度数基本上也相同。

它们的结构如按照平面来书写,很难看出有什么两样,都是CH3CH2CH(OH)CH3,可是在空间排列上,它们是不同的,它们互成镜象不重合,所以不是一个化合物,是构型异构体。

由于这两个异构体互相对映,故称为对映体(Enantionmers).又因为它们中的一个要使偏振光向左转,另一个使偏振光向右转,所以也常称为旋光异构体(Optical isomers)。

旋光异构现象是用偏振光来鉴别的,那么什么是偏振光?化合物的旋光性又是怎样测得的?第一节物质的旋光性一、平面偏振光和旋光性光波是一种电磁波,它的振动方向与其前进方向垂直。

在普通光线里,光波可在垂直于它前进方向的任何可能的平面上振动。

中心圆点"O",表示垂直于纸面的光的前进方向,双箭头表示光可能的振动方向。

第六章 对映异构一、 基本内容本章从不对称物质具有旋光性的现象出发,解释了有机化学中不对称性分子产生旋光性原因。

从立体化学的角度对分子的构型进行了阐述。

介绍了各种表示构型的方法。

主要有费歇尔投影式、纽曼投影式、楔型式及锯架式。

介绍了手性的概念及如何用对称元素来判断分子有无手性及如何表示手性碳原子的方法等问题。

在此基础上,引出了对映异构体、非对映异构体、外消旋体及内消旋体等概念。

在前面各章的基础上强调了反应过程中的立体化学问题。

二、 重点与难点本章的重点是对所学的各种概念的理解和应用,在多做练习的基础上加深对基本内容及有关立体化学知识的理解。

包括R/S 命名法、各种表示构型的方法及相互间的转换、对称元素及其操作、反应过程中的立体化学问题及对映异构体、非对映异构体、外消旋体及内消旋体等概念。

难点主要体现在对立体化学的理解上。

如表示构型的方法及相互间的转换和反应过程中的立体化学问题。

(1)取部分该溶液放在5 cm 长的盛液管中,在20 o C 用钠光作光源测得其旋光度为+2.1o ,试计算该物质的比旋光度。

(2)把同样的溶液放在10 cm 长的盛液管中,预测其旋光度。

(3)如果把10 mL 上述溶液稀释到20 mL,然后放在5 cm 长的盛液管中, 预测其旋光度。

解 比旋光度是旋光物质特有的物理常数,用下式表示:t 为测定时的温度(一般为室温,15-30 o C );λ为测定时的波长(一般采用波长为589.3 nm 的钠光,用符号D表示),在此测定条件下得出的比旋光度用[α]D 表示亦可。

(1)将旋光度α=+2.1o 带入上式,得(2)旋光度为α=+2.1o *2=+4.1o(3)旋光度为α=+2.1o /2=+1.05o1 c ( g / mL )l (10 cm)=t[ ]λαα= + 15ol (10 cm ) c ( g / mL )100 / 14+ 2.1o=c ( 14g / 100 mL )+ 2.1 o=ααD [ ]20=l (10 cm) c ( g / mL )6-2 将一葡萄糖的水溶液放在10 cm 长的盛液管中,在20 0C 测得其旋光度为+3.20,求这个溶液的浓度。

第五章 对 映 异 构一、基本概念1、旋光性——物质使平面偏振光旋过一定角度的特性;有左旋和右旋之分;物质具备旋光 性与否需要通过旋光仪进行测定。

2、旋光性物质——具有旋光性的物质,分左旋体(l 或-)、右旋体(d 或+)。

3、手性——实物与镜像关系,即只能重合不能重叠。

4、对映异构——构造相同的两个化合物,互呈“实物与镜像”关系,对映而不能重叠,它们对平面偏振光的作用不同,生理活性也不同,称为对映异构体。

因其旋 光性上的表现不同,又称旋光异构体。

5、对映异构体特征——构型上互为实物与镜像关系;旋光性上大小相等方向相反。

6、外消旋体——等量的左旋体+右旋体,混合后体系失去旋光性(外因使然),是混合物。

7、内消旋体——分子内存在对称因素使分子不具有旋光性(内因造成),是纯净物。

8、手性碳C ——sp 3杂化,连接四个不同基团的碳原子。

9、手性分子——分子内无对称因素(要求掌握对称面),常常是“有且只有一个手性碳”的 分子;手性分子具有旋光性、存在对映异构体。

10、对称面(σ)——把分子分成实物与镜像关系的面,即平分分子的平面,把分子分成完全相等的两个部分,可以有一个或多个。

手性、手性分子、旋光异构体、对映体:dbd 实物镜像两者对平面偏振光作用不同,称为旋光异构体;两者只能重合不能重叠,互为镜像关系,具有手性,是手性分子;因具有镜像关系,又称对映体对称面σ举例(可以有多个):二、分子具有手性的原因根本原因——分子内无对称因素;常见原因——具有手性碳原子。

三、对映异构体的判断手性分子具有对映异构体,故判断有否对映体只需判断是否是手性分子。

(一)先找常见原因——C *:有且只有一个C *,一定是手性分子。

(二)若没有C *,则找根本原因:分子内找不到对称因素(掌握对称面),一定是手性分子。

注:有C *不一定是手性分子(内消旋体);无C *不一定不是手性分子(丙二烯型,两端碳所连原子或基团不同时;其余类型略)。

第五章对映异构(enantiomerism)教学要求:掌握:手性和手性分子以及手性碳原子的概念。

对映体、非对映体、外消旋体和内消旋体的概念和主要性质;对映异构体命名方法(R..S)。

熟悉:费歇投影式和透视式表示立体异构体的方法。

了解:无手性碳原子的对映异构体和环状化合物的对映异构;对映体的拆分方法和手性子在生物中的作用,以及前手性原子和前手性化合物的概念。

对映异构主要是从三维空间揭示对映存在的立体异构体,在结构上差别甚微,而在生物活性上却有着天壤之别。

本章将着重学习怎样区分手性分子和非手性分子;怎样判断对映体、非对映体、外消旋体和内消旋体的存在,以及怎样表示和命名它们的立体结构;比较它们之间性质上的异同点;了解对映体的拆分方法和手性分子在生物中的作用,以及前手性原子和前手性化合物的概念。

学习对映异构为学习糖类、脂类、氨基酸、蛋白质、核酸、酶、和激素等各种活性分子的结构和功能奠定必要的立体化学基础。

第一节手性和对映体同分异构在有机化学中是极为普遍的现象。

在第二章已经学习了构造异构和顺反异构以及构象异构。

后两者均属于立体异构。

即分子中的原子或原子基团在空间的排列方式不同产生的异构现象。

通常构象异构体是不能分离的。

本章要介绍另外一种立体异构现象:即对映异构。

图示如下:一、手性产生对映异构现象的结构依据是手性(Chirality)。

什么叫手性呢?人们都有这样的感受,:当你将一只左手套戴在右手上就会觉得很不舒服。

这就说明左右手看上去似乎是相同,实际是不同的。

那么左右手到底是什么关系呢?让我们看看手性关系图。

图3-1 手性关系图这种左右手互为镜像与实物关系,彼此又不能重合的现象称为手性。

自然界中有许多手性物,例如:足球、剪刀、螺丝钉等都是手性物。

微观世界的分子中同样存在着手性现象。

有许多化合物分子具有手性。

二、手性分子和对映体图3-2是一对互为镜像关系的乳酸分子的立体结构式(透视式):a和b两个立体结构式之间有何种关系?它们代表相同的分子?还是代表不同的分子?不妨观察上述乳酸分子的两个立体结构式的球棍模型图示(见图3-3)图3-3-1乳酸球棍模型图示图3-3-2 乳酸球棍模型为什么乳酸存在一对对映体?仔细观察图3-2的两个乳酸分子的结构,可发现分子中有一个碳原子(C2)所连的四个基团(COOH,OH,CH3,H)均不相同。

第五章对映异构本章要点:1、概念:手性碳原子,手性分子,对映体,内外消旋体,……2、产生原因:根本原因、常见原因3、构型表示:费歇尔投影式;D/L、R/S命名4、对映异构体及数目判断一、基本概念1、旋光性——物质使平面偏振光旋过一定角度的特性;有左旋和右旋之分;物质具备旋光性与否需要通过旋光仪进行测定。

2、旋光性物质——具有旋光性的物质,分左旋体(l或 -)、右旋体(d或 +)。

3、手性——实物与镜像关系,即只能重合不能重叠。

4、对映异构——构造相同的两个化合物,互呈“实物与镜像”关系,对映而不能重叠,它们对平面偏振光的作用不同,生理活性也不同,称为对映异构体。

因其旋光性上的表现不同,又称旋光异构体。

5、对映异构体特征——构型上互为实物与镜像关系;旋光性上大小相等方向相反。

6、外消旋体——等量的左旋体+右旋体,混合后体系失去旋光性(外因使然),是混合物。

7、内消旋体——分子内存在对称因素使分子不具有旋光性(内因造成),是纯净物。

8、手性碳C——sp3杂化,连接四个不同基团的碳原子。

9、手性分子——分子内无对称因素(要求掌握对称面),常常是“有且只有一个手性碳”的分子;手性分子具有旋光性、存在对映异构体。

10、对称面(σ)——把分子分成实物与镜像关系的面,即平分分子的平面,把分子分成完全相等的两个部分,可以有一个或多个。

手性、手性分子、旋光异构体、对映体:bcdabcd 实物镜像两者对平面偏振光作用不同,称为旋光异构体;两者只能重合不能重叠,互为镜像关系,具有手性,是手性分子;因具有镜像关系,又称对映体对称面σ举例(可以有多个):C=CClHClH对称面对称面C=CCl HClH对称面ClHClH对称面C对称面二、分子具有手性的原因根本原因——分子内无对称因素;常见原因——具有手性碳原子。

三、对映异构体的判断手性分子具有对映异构体,故判断有否对映体只需判断是否是手性分子。

1、有且只有一个C ,一定是手性分子。

2、分子内找不到对称因素(掌握对称面),一定是手性分子。

注:有C 不一定是手性分子(内消旋体);无C 不一定不是手性分子(丙二烯型,两端碳所连原子或基团不同时;其余类型略)。

四、对映异构体的构型及表示 (一)费歇尔投影式 1、标准费式书写规则:(1)C 处中心,主链直立,1号碳最上; (2)横前竖后进行投影;(3)十字交叉,交点为C ,基团标注。

例题:乳酸CH 3CH(OH)COOH 的标准费歇尔投影式:COOHCH 3C H OHCH 3CH(OH)COOH投影COOHCH 3HOH*标准费歇尔投影式 (表示立体形象)横前竖后2、非标准费式的转换:①平面内旋转180后相同——同一构型;旋转90(270)后相同——相反构型; ②同一C 上基团互换偶数次后相同——同一构型,互换奇数次后相同——相反构型。

例题:CH 3H OHCOOHCH 3HOHCOOHCH 3H(1)(2)(3)是否是对映体解:(1)式是标准费式,在纸平面上旋转180度后得到(2)式,所以两者为同一化合物;(2)式中甲基与氢互换一次、羟基与羧基互换一次后得到(3)式,同一手性碳上的基团互换偶数次后相同,所以两者为同一化合物;因此,(1)、(2)、(3)貌似不同,实为同一化合物。

(二)相对构型(D/L )及其表示左旋CHO 2OHOH HCHO2OH H HO羟基在右是D 型右旋D-(+)-甘油醛规定:表示:L-(-)-甘油醛羟基在左是L 型1、以“甘油醛”的一对对映体为基本对象,人为规定:标准费歇尔投影式中羟基在右的为D 型右旋的甘油醛,羟基在左侧的为L 型左旋的甘油醛。

2、因是人为规定,所以称“相对”或“D/L ”构型,后证实恰好与规定相符,故沿用至今。

3、其他物质由甘油醛作为底物合成而来,并由此推断D 型或L 型,旋光方向由旋光仪测得。

4、注:①D/L 要求标费,横向上优先大的基团在右为D 型,在左为L 型; ②+/-靠测定,D/L 与+/-没有对应关系;③D/L 存在局限,不能通过甘油醛合成的物质无法判断D/L 构型。

例如:乳酸可以通过甘油醛来合成:COOHCHO CH 2OH OH H[O]COOHCH 2OHH[H]CH 3HOH OH D-(+)-甘油醛D-(-)-甘油酸氧化未破坏骨架,仍为D 型旋光仪测得产物为左旋D-(-)-乳酸还原未破坏骨架,仍为D 型旋光仪测得产物为左旋由此合成得到的乳酸,左旋的是D 型,那么右旋的乳酸就是L 型:L -(+)-乳酸。

乳酸的一对对映体:COOH CH 3HOH COOHCH 3HOHD-(-)-乳酸L-(+)-乳酸 (三)绝对构型(R/S )及其表示1、基本思想:由C 上基团优先顺序确定构型,非人为规定,故称“绝对”或“R/S ”构型,不需要写出标准费歇尔投影式。

2、判断方法:①立体判断:C 上基团比出优先,最小的放在离眼最远处观察,剩下的由大到小顺时针为R ,逆时针为S 。

Cadcb 假定优先顺序是a>b>c>d ,d 放在最远,剩下由a 到c 为顺时针,是R 型。

Cabc 假定优先顺序是a>b>c>d ,d 放在最远,剩下由a 到c 为逆时针,是S 型。

②平面判断:写出费歇尔投影式,基团比出优先,“小上下同向,小左右反向”。

小上下同向——最小基团在费式纵向,则剩余基团由大到小顺时针为R ,逆时针为S ,与立体判断法相同。

小左右反向——最小基团在费式横向,则剩余基团由大到小顺时针为S ,逆时针为R ,与立体判断法相反。

a b cd假定优先顺序a>b>c>d ,d 在纵向上,剩余由a 到c 为顺时针,是R 型。

(与立体判断法相同)acd 假定优先顺序a>b>c>d ,d 在横向上,剩余由a 到c 为顺时针,是S 型。

(与立体判断法相反)(四)相对构型(D/L )和绝对构型(R/S )的注意事项:1、D/L 、R/S 是两套构型标注方法,没有对应关系;2、构型与旋光方向没有对应关系,即D/L 、R/S 与+/-之间没有对应关系;3、D/L 构型需要写出标费,要从立体角度思考;R/S 不需要标费,立体、平面都可判断。

五、旋光异构体数目的判断(要求掌握1~2个C*化合物的判断) (一)概述1、含n 个不相同C*的化合物:旋光异构体数 = 2n 对映体对数 = 2n /2外消旋体数 = 2n /2 注:不相同C*——C*上四个基团不完全相同。

2、含n 个相同C*的化合物:旋光异构体数2n注:①相同C*——C*上四个基团完全相同。

②要求掌握2个相同C*化合物的判断:旋光异构体数=3 (1对对映体+1个内消旋体)。

(二)例题1、**CH 3C 2H 5Cl H HCl(2R,3R)-2,3-二氯戊烷的旋光异构体有多少个解:两个C*上各自的四个基团不完全相同,是不相同的C*,旋光异构体数=22=4:其中,Ⅰ~Ⅱ~Ⅲ~Ⅳ互称为旋光异构体;Ⅰ~Ⅱ,Ⅲ~Ⅳ之间具有物像关系,称对映体,其余为非对映体。

可见:旋光异构体范围大,对映体是旋光异构体中的一个特殊群体(具物像关系),无物像关系的旋光异构体称为非对映体。

2、**COOHCOOHH OHHO H(2R,3R)-2,3-二羟丁二酸的旋光异构体数目解:两个C*上各自的四个基团完全相同,是相同的C*,旋光异构体数<22:其中,Ⅰ~Ⅱ~Ⅲ=Ⅳ互称为旋光异构体;Ⅰ~Ⅱ为对映体,Ⅲ=Ⅳ为内消旋体(有C*的非手性分子),余为非对映体;因此,(2R,3R)-2,3-二羟丁二酸的旋光异构体数目=3(1对对映体+1个内消旋体)六、环状化合物的对映异构要求:能判别环上C*构型、判断对映体、找出对称面。

例如:1,2-环丙烷二甲酸的旋光异构体有几个1、12**HCOOHHCOOHσ(顺式):1号碳连有“H、COOH、亚甲基2号碳、2号碳亚甲基”四个不同基团,因此属于C*;2号碳也同理。

1号碳的四基团优先顺序:COOH>2号碳亚甲基>亚甲基2号碳>H,从环下往上观察,从“COOH”到“2号碳亚甲基”,再到“亚甲基2号碳”是顺时针因此是R型;2号碳的四基团优先顺序:COOH>1号碳亚甲基>亚甲基1号碳>H,从环下往上观察,从“COOH”到“1号碳亚甲基”,再到“亚甲基1号碳”是逆时针,因此是S型;该分子中虽有两个C*,但存在一个对称面,因此是内消旋体。

2、**HCOOH12(反式):与上题类似,1、2号碳都是C*,均为R 型;无对称面,是手性分子。

3、**H HOOC12也同样,1、2号碳是C*,都是S 型;无对称面,是手性分子。

结论:顺式的是内消旋体,两个反式的(2和3)是一对对映体,故旋光异构体有3个:12**H COOHHCOOHσ**HCOOH12**HH COOHHOOC12内消旋体对映体验证:1,2-环丙烷二甲酸具有两个相同的手性碳,故有: 旋光异构体数= 3 :一对对映体 + 一个内消旋体说明:联苯型、螺环等其他不含手性碳原子的异构分析、以及对映体的拆分不作要求。

THE END
0.MaterialsStudio学习笔记(十八)——同分异构体建模基本定义:分子式相同,而结构不同的化合物互称为同分异构体。 种类:(1)构造异构体(2)立体异构体 具体分类如下所示: ​ 1、构造异构体 (1)碳架异构体 碳架异构体主要是分子中的碳骨架不同,例如正丁烷和异丁烷。 (2)位置异构体 位置异构体主要是功能团的位置不同,例如正丁醇和2-丁醇。、 jvzquC41dnuh0lxfp0tfv8r2a97:::8251gsvrhng1jfvjnnu175:A5464<
1.有道词典它包括碳链异构、位置异构、官能团异构、互变异构和价键异构五种。 简介 构造异构(structural isomerism)是同分异构体的分子式相同而分子中原子或基团排列顺序不同的现象,与立体异构同属于有机化学范畴中的同分异构现象。 分类 构造异构又可分为以下5类: ⒈碳链异构:异构体的分子式相同而碳骨架不同的现象jvzquC41o0pwmfq0eun1|npinkeklyAfkiu?kfkmgeeg}fkn(sptnBvtwk'sF*G8'?F'A9'G;+92.F2'G;&DL*:4'K7'BJ':6
2.构象异构.PPT(366319种) C7H16有9个构造异构体: 氢原子的类型 伯氢 1oH 仲氢 2oH 叔氢 3oH 伯碳 1o 与一个碳相连的碳 仲碳 2o 与二个碳相连的碳 叔碳 3o 与三个碳相连的碳 季碳 4o 与四个碳相连的碳 碳原子的类型 2.2.1.伯.仲.叔.季碳原子和伯.仲.叔氢原子 伯氢 仲氢 叔氢 1、写出只含有伯jvzquC41oc~/dxtm33>/exr1jvsm1;539168394343;36>690unuo
3.构造异构,structuralisomerism,音标,读音,翻译,英文例句,英语词典构造异构体 例句>> 3) tectonic differentiation 构造分异 1. Because of tectonic differentiation, serie. 盆地自形成以来一直处于稳定的沉降状态,在古近纪和新近纪成盐期,盆地经历了强-弱-强3个构造演化阶段,其沉降中心由北而南逐渐迁移,沉积中心由北西逐渐向东、南东方向迁移,盆地内的构造分异渐趋明显,形成jvzq<84yyy4eklycnn4dqv4kpf{6789517;55B6:HEH90qyo
4.第二节氧代酸(当前章节内容组合)《医用化学》乙酰乙酸乙酯的酮式与烯醇式是构造异构体,二者的差别仅在于一个双键及一个质子的位置不同。在酮式中是C=O双键,质子连在羧酸酯基的α碳上;在烯醇式中是C=C双键,质子连在羧酸酯基的β碳所连的羟基中。酮式与烯醇式之间很容易相互转化,只要有痕量的酸或碱,甚至玻璃容器的器壁,都能促其转变,建立平衡。因此,把jvzquC41yy}/|‚xl0eun0ls1nkrvp|mwlk5zk‚tpij{bz~j1;78.3B24aixpwy3jvor
5.化学竞赛知识点解析1同分异构体指的是有同样分子式但结构不同的两个分子,在其中,又分为 constitutional (or structural) isomers(构造异构体)和 stereoisomers(立体异构体),竞赛中对立体化学的考察就是围绕各种立体异构体展开的。 立体异构体又分为两种,diastereomers(构型异构体)和 enantiomers(旋光异构体)。 jvzq<84yyy4y/wjy0et0|r}wp1mvqsnlkpmtcr4WMENP1;544/62/;<14;:/j}rn
6.超高场离子云扫描技术实现高分辨生物分子异构体分析研究生物分子存在多级结构,而其结构复杂度的一个重要因素为分子异构。不同的异构分子(Isomers and isoforms)具有相同的化学式和分子量,但化学结构不同。例如,单糖存在多种异构体,包括葡萄糖、果糖、半乳糖等;多糖由单糖两两通过糖苷键相互连接组成,导致出现更为复杂的构造异构(分子中原子或原子团互相连接次序不同,jvzquC41yy}/v|npij{b0niw0et0kwkq1378786244890qyo
7.有机化学:第二章烷烃和环烷烃的通式和构造异构.ppt碳架异构: 碳骨架不同引起的构造异构。 构造异构体: 分子式相同,原子间互相连接的次序(构造)不同。 同分异构体(isomers) 一、烷烃和环烷烃的通式和构造异构 一、烷烃和环烷烃的通式和构造异构 b. 环烷烃: 与烷烃类似,但比烷烃复杂 C5H10: 异构现象是造成有机化合物数目庞大的原因之一 第二章 饱和烃:烷烃和jvzquC41o0hpqt63:0ipo8mvon532;71257:1A5682:22<;2266767xjvo
8.轻工科学与工程学院2024年硕士研究生入学考试《基础化学》考试理解有机化合物特点,熟悉有机化合物同分异构,掌握有机化合物构造式的书写方法和分类,熟悉有机反应的中间体和分类。 9.烷烃、不饱和烃、脂环烃 掌握烷烃的系统命名法,理解脂肪族烃类化合物物理性质及变化规律,掌握烷烃的自由基取代反应、烯烃的加成反应和氧化反应、炔烃的加成反应和氧化反应、共轭体系的加成、环烷烃jvzquC41shyq0|hw0gjv0ls1kplp1:5721716<>0jvs