结构体系是什么——看图说话

小i至今的原创推文已有100多篇,不知有没有细心的读者注意到,文章看似杂乱无章,其实写作也是遵循几条主线的—结构体系线、材料线、结构大师线。下面小i为大家整理了一下几条线的思维导图,大家先来随意感受一下。

细研究一下这三条思维线我们可以发现,它们既相互独立又相互交织,比如提到拱就会提到石拱以及材料压强拉弱的特性,提到混凝土薄壳就一定会提到坎德拉(Felix Candela)与伊斯勒(Heinz Isler),同时说起迪埃斯特(Eladio Dieste)就不得不提砖砌体以及高斯拱。有兴趣的朋友不妨顺着几条线,回顾一下小i往期的文章。

在日常与建筑工程师交流中,年轻的建筑师总有个疑惑,建筑师掌握结构到底需要掌握到什么程度?我原来觉得这种“玄学问题”没必要回答。直到有一次建筑同事让我帮忙辅导注册考试中结构部分时,我发现“官宣”对于这个问题的答案可能稍有误导,为什么建筑师要知道一个结构几次超静定?为什么不让建筑师知道结构体系、材料特性?

其直接结果就是,部分建筑系学生都会做一套完整的参数化表皮,但内部却是一套柱网;看到苹果的玻璃盒子后,建筑方案中玻璃幕墙当剪力墙用;钢柱和混凝土柱一个尺度用等等。

小i一直提倡“美在合理近旁”,今天就以结构体系线,为大家简要梳理一下结构中常用的结构体系,由于篇幅有限本篇主要介绍大跨结构的体系。其中很多体系小i往期文章都有详细介绍,在每章末会给出“传送门”,方便有兴趣的朋友阅读。

结构体系和结构受力是分不开的,从结构受力划分主要会分为压力、拉力、弯曲三类结构体系,小i今天的介绍就从这三方面进行展开。

▲古罗马斗兽场

压力结构的故事要从拱讲起,而谈到拱的受力要先从悬索开始。在两个支座之间连一根悬索,在重力作用下悬索中只有拉力。此时将悬索翻转过来就成了拱,在重力作用下拱中产生了与拉力大小相同的压力。拱的原理就是把力流都以压力的形式传递到结构的支点(拱脚)处,充分利用材料的受压性能。因此对于石材、砖块等受压王者受拉弱鸡的材料,拱结构与之真是“天作之合”。

关于拱有一点希望建筑师注意!要让拱成立拱脚会有很大的推力。为什么会有推力?可以试试现在站起来劈叉,这时你双腿就形成了一个拱,双脚就形成拱脚,有没有感觉地很滑的时裆部的拉扯?这说明拱脚侧推力不足拱会垮掉;现在试着越劈越低,有没有感觉双脚越来越用力?这说明拱越低所需的侧推力越大。

理解了拱的受力特征之后,我们将二维的拱做一些简单的三维操作。首先对拱进行单轴拉伸,我们就得到了筒壳。筒壳继承了拱的特性,结构内以压力为主,在壳体底部两个边界会产生侧推力,且筒壳越低侧推力越大(如果有疑问,可以试试和朋友抱成一排,一起劈叉

)。

早期人们用石材的“拱”建造教堂,通过两侧飞扶壁与端部厚实的拱壁来抵抗推力。

▲教堂与飞扶壁

迪埃斯特将其用在砖砌体中,将数个拱连在一起形成自承重筒壳,筒壳的侧推力相互抵消。

▲自承重筒壳

而后混凝土、钢材等材料出现,结构工程师通过将连续的壳面离散成网格,建造了一系列“新型筒壳”,形式在变但筒壳的受力特性没有变化。

▲飞机库(钢筋混凝土斜交网格筒壳)

▲都灵展览馆B厅

我们接下来试着把拱旋转,就得到了穹顶。同样,其力学性质与拱类似,穹顶内主要为压力,穹顶底部会有向外扩张的趋势,因此底部会形成拉力环,穹顶越低底部拉力越大。

随着时代的推进,穹顶也通过对不同材料的应用,经历了砖石、混凝土壳、混凝土网格、钢结构网壳、铝合金网壳的演变过程。

▲万神庙维(维持了1700多年世界最大穹顶的记录)

▲罗马奥运会小体育馆(混凝土穹顶)

▲南京牛首山穹顶(铝合金结构)

我们继续对拱进行扫掠、对曲面进行逆吊等各种操作后,又可以得到各式各样的结构,但万变不离其宗,他们都是压力结构。但此时受力就不是那么简单可以概述了,如建筑师有疑惑,可以咨询结构工程师小伙伴,也可参看小i以往的文章。

▲马德里赛马场(混凝土薄壳)

▲混凝土薄壳大师

▲混凝土壳最后的荣耀

▲大英博物馆(钢结构网壳)

传送门:

《拱的力量》《世界十大穹顶建筑盘点》《混凝土壳体的新生》《结构大师系列-Eladio Dieste》

拉力的故事要从悬链讲起。形是力的图解。形与力相结合的形态,广泛存在于自然界和生活中。比如,森林中悬垂的藤蔓、粘着露水的蛛丝,以及人类建造的吊桥和输电线,都是形与力高度结合的悬链线形态。

▲粘着露水的蛛丝

与压力结构类似,拉力结构同样有一个很重要的问题,在张拉点会产生很大的侧向拉力。曲线越是扁平,悬链两端水平反力越大,需要强大的反力构件。

▲悬链结构抵抗侧拉力的方法

受拉结构的结构体系可分为索与膜两类,具体怎么分不多话看下图。

索与膜都被称为轻型结构,为什么被称为轻型结构?因为轻啊(调皮一下

)。下面主要通过案例直观的感受各种体系,具体的介绍请通过本章末的“传送门”直达。

▲东京代代木国立综合体育馆

场馆中央跨度为126m,约为若户大桥总跨度的1/3

主索拉成吊桥形式,在其两侧看台之间架设钢结构悬挂构件,稳定索呈受拉状态。

在张拉式结构中首次引进“半刚性”(Semi-rigid)的设计思想

▲杜勒斯机场航站楼

航站楼悬垂屋盖跨度约43米

整个大厅内部没有任何立柱

在重力荷载下,屋面自然下垂成悬链状

巨大的混凝土柱子向外倾斜,用以平衡和抵抗悬索端部的水平力

1998年里斯本世博会葡萄牙馆

20cm厚的白色混凝土

包裹着高强钢索

跨越近70m

却轻盈得像是一条毛毯

▲雷诺汽车配送中心(斜拉)

▲蒙特利尔博览会德国馆(索网结构)

弗雷·奥托参与蒙特利尔博览会德国馆的方案竞标

该结构是世界上当时最大的均匀网格索网结构

张弦梁,由上弦的刚性构件(Beam)和高强度的张拉索/杆(String),再通过若干个撑杆(Strut)连接而组成的刚柔混合结构,利用形抗和预张力抵抗外部荷载,是一种高效的大跨度空间结构体系。

对于张弦梁的起源有许多种说法。一种是系杆拱增加竖直撑杆的“加法”演化;一种是鱼腹式桁架去掉斜腹杆的“减法”演化。在20世纪末,张弦梁形式的大跨度空间结构兴起,而斋藤公男教授被认为是现代最早尝试张弦梁结构的工程师。

▲张弦梁的演化过程

▲浦东机场张弦梁屋面

▲出云穹顶(立体张弦结构)

张拉整体结构是一种稳定的自平衡结构体系。对受过结构分析训练的人来说,看出传统结构的传力关系是相对容易的,而张拉整体则是牵一发而动全身,更为这种结构形式增添了一份神秘。关于张拉整体结构还有一段师徒之间的八卦,有兴趣的朋友可以从本章末传送门直达《拉力海洋中的孤岛—张拉整体》。

▲张拉整体结构

1992年建成的Georgia穹顶由Levy等人设计,作为1996年亚特兰大奥运会的主场馆。由于体系创新,该类型穹顶被称为Levy穹顶。

▲Levy型穹顶

关于膜结构的近代史,可以认为从帐篷开始演变和启发的。膜材主要分为织物类膜材(PVC\PTFE)和非织物类膜材(ETFE)两大类。膜材的选择往往在很高程度上取决于建筑物的功能、防火要求、设计寿命和投资额。

▲膜结构的主要分类

▲蓬皮杜梅斯艺术中心和汉诺威世博会日本馆

建筑师:坂茂(骨架膜)

▲张拉膜

▲充气膜

传送门:

《建筑中的微笑曲线—悬链》《挑战重力的另一种方式—悬挂结构》《张弦梁—演化、设计要点和案例》《拉力海洋中的孤岛—张拉整体》

这里讲的弯,不是建筑师眼中的形态弯,也不是英国人眼中的取向弯,而是结构受力状态。一般在大跨度和长悬臂结构中,构件受弯是主要问题,也是建筑师和结构师争(si)论(bi)的焦点。

最常见的受弯构件就是我们日常设计中都能碰到的梁,关于梁的受力机理,小i的往期文章《从一根悬臂梁说开去》有详细介绍,这里不再赘述。用不同的材料,在截面上稍作变化,我们就可以得到不同类型的梁。

数学家和物理学家都喜欢化归法,即把新的问题转化为已经解决的问题。同理,梁受弯问题同样可以转化为拉压杆件的组合——桁架就出现了。常规的桁架是由几何不变的三角形单元组成的刚性结构,杆件主要承受轴向拉压力,结构效率很高。对于空间结构的悬挑和跨越主题,桁架结构几乎是万能的。

从桁架的历史发展来看经历了三角桁架、梁桁架、空腹桁架、空间桁架等形式。

早在两千年前,人类的祖先就发现了三角形的稳定性原理,并发明了三角桁架,广泛应用在古代住房的木制屋盖中。三角桁架与梁、拱一样,是古代建筑实现跨越的最主要方法。三角桁架形状与简支梁跨中受集中荷载的弯矩图一致,它比梁结构的效率更高,且不会像拱那样对支座产生推力。

▲三角桁架基本原理

▲三角桁架的基本形式和演化

梁桁架又称为平行弦桁架,出现于19世纪中叶,是由拱桥发展而来。到19世纪80年代,工程师们已经掌握了简洁实用的桁架设计方法。同时,材料也在不断的进步,工程师将铸铁用于受压杆,锻铁用于受拉杆,而后又以性能更好的钢材替代。越来越多的大跨度桁架结构出现,尤其是在桥梁领域。

▲早期桁架

▲蓬皮杜中心

空腹桁架是在常见桁架的基础上将斜腹杆去掉,而由竖腹杆与弦杆构成的格子状结构。由于没有斜腹杆阻挡空间,建筑师往往偏好空腹桁架。但是任何事都是有利有弊,空腹桁架的直腹杆在解放空间的同时,不得不承受很大的剪力和弯矩,桁架整体的效率不如普通桁架。

▲耶鲁大学善本图书馆

早期的桁架都是以平面形式出现,工程师一般通过布置水平支撑的方式,解决其平面外的稳定问题。而后出现的空间桁架,构件则在三个维方向布置,其横断面常为三角形或矩形等,大大提高了桁架的整体稳定性,适用于现代大跨度空间结构。

▲汉堡机场空间桁架

对于抗弯结构我们还有一种选择—折板。比如一张纸非常薄,因此抗弯刚度很小;而当我们折叠纸形成折板时,就形成了空间结构,通过空间形抗作用,大幅提高了结构的整体刚度。折板在受力上同样满足正弯矩侧受拉另一侧受压的基本受力特征。

▲折板原理

▲Windisch-Mülimatt体育中心

传送门:

《从一根悬臂梁说起》《从一根简支梁说开去》《挑战重力—悬挑结构的实现方式》《万能的桁架,无限的变化》《对于大跨结构除了网格结构你还有一个选择—折板》

小i一直在探寻建筑结构的融合,本篇对于结构体系线的总结,也是为建筑师理解结构起到抛砖迎玉的作用。

作家七堇年说过,“电影里说,'你我之间本无缘分,全靠我死撑,我明白的。’ 以前觉得这话直抵泪点,现在却觉得,说白了,爱一个人真的就是自己一个人的事儿,得拿出过日子一样的态度。只要还想继续,就大不了哭一场,硬着头皮爱下去。世间什么缘分不缘分,都是撑来的。” 现在想来,其实做结构设计也是这样,那些近乎完美的建筑,都是各个专业上下求索的死撑才能完成的。

附上几句在2014年中日建筑结构学会议及2019年结构成就建筑之美会议上大师们的观点作为结尾。

大野博史:“要将建筑与结构统一,让人无法区分建筑和结构。”

张永和:“现在建筑学培养的学生多不懂技术,陷入自己是艺术家的幻想。”

周健:“结构形式是在各种约束条件下自然形成的,没有定式。”

斋藤公男:“日本的自然灾害频发使得日本在设计建筑时首先考虑的是安全。”

THE END
0.网壳铝网壳钢网壳三角形网壳直销碳钢储罐用【价格,厂家,求购,使用其传力特点主要是通过壳内两个方向的拉力、压力或剪力逐点传力。此结构是一种国内外颇受关注、有广阔发展前景的空间结构。网壳结构又包括单层网壳结构、预应力网壳结构、板锥网壳结构、肋环型索承网壳结构、单层叉筒网壳结构等。 网壳 铝网壳 钢网壳三角形网壳 直销 碳钢储罐用性能特点jvzquC41ep4ncmj/kp3djrsc0eun1ptpi{ooi8mwcjkoi|mkjwg.[foHRUDEp\h0jznn
1.建筑结构的类型与结构选型课件.pptx美国斯克山谷滑冰场(混合悬索结构) 2. 空间薄壁结构 ( 薄壳 ) 结构特点 1) 结构的刚度取决于它的合理形 状 2) 厚度较薄 3) 可具备骨架和屋盖的双重作用 适用范围 适用于大跨度公建,应用范围较广 壳体结构常用类型 筒壳、折板、波形壳、双曲壳 双曲壳 折板 筒壳 小学校(筒壳结构) 菜市场(折板结构) jvzquC41oc~/dxtm33>/exr1jvsm1;5451724;4752633;8462722:70ujzn
2.虾峙客运站/致正建筑工作室舟山市设计团队将站场视为一个开放的公共空间,并释放海岸线,这成为整个场地策略的核心;并用两条在场地上互成犄角、大小相配、由山形渐变到拱形的混凝土筒壳结构来覆盖形成两个体量。两个筒壳之间面向站前广场呈八字开口,并用一条弧形轻钢拱顶连廊相联系。这一双筒壳布局方式延续了概念方案中对于场地地形变迁痕迹的提示jvzq<84m0uooc7hqo0io1jwvkerfa<>363<429;ag;:e8<8g24613nkw80nuou
3.狭窄血管内适形贴壁支架的结构设计及生物力学性能的数值分析本文重点关注支架、血管及斑块三部分的力学性能,因此在不影响力学表现的情况下简化了球囊和压握壳的模型,如图2 所示。将压握壳建立为一个圆筒空壳结构,设置其外径为 4.45 mm,厚度为 0.01 mm,长度为 16 mm,提供与临床情况相近的、径向向内的压缩载荷。球囊的横截面为环形褶皱型,整体呈现圆柱形结构,其长度大于所使jvzquC41yy}/j~z0eun1jwvkerf1:5097681:523/;63>3424624963
4.知识科普常见的锅炉结构有哪些特点?我们一起来看看!另一个方向是在圆筒外部增加受热面积。即突破锅壳筒体的限制,在锅筒之外设置燃烧室和受热面,形成并发展“水管锅炉”。沿着这个方向,人们先后造出了水筒锅炉、直水管锅炉、弯水管锅炉。目前常见的是双锅筒弯水管锅炉及单锅筒弯水管锅炉。 水管锅炉,特别是弯水管锅炉的出现,是锅炉发展史上的一次飞跃。它在结构上为jvzquC41uvgukl3phcvq0|twvjio0lto1euovnsv14636961335d:=>733:/j}rn
5.徐州先禾钢结构网架工程有限公司网架加工厂家网架生产厂家徐州网架,球形网架加工厂家-徐州先禾网架公司,徐州螺栓球网架加工基地,专业网架设计,网架加工,网架安装一条龙服务,煤棚网架施工技术支持,网架配件批发及定做,提供最新网架报价.jvzq<84yyy4y|kii0ipo8
6.冷却塔直纹面的matlab,为什么电厂的冷凝塔是双曲线型外壳这个怪样子下环梁位于通风筒壳体的下端,风筒的自重及所承受的其他荷载都通过下环梁传递给斜支柱,再传到基础。筒壁是冷却塔通风筒的主体部分,它是承受以风荷载为主的高耸薄壳结构,对风十分敏感。其壳体的形状、壁厚,必须经过壳体优化计算和曲屈稳定来验算,是优化计算的重要内容。塔顶刚性环位于壳体顶端,是筒壳在顶部的加强jvzquC41dnuh0lxfp0tfv8|gkzooa<5;82?:78ftvkimg8igvcomu8637;=52?: